OREGON CULVERT FISH PASSAGE SURVEY

October 1990

Western Federal Lands Highway Division, Federal Highway Administration

OREGON CULVERT FISH PASSAGE SURVEY

MARK C. BROWNING

WESTERN FEDERAL LANDS HIGHWAY DIVISION FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON

OCTOBER 1990

ABSTRACT

This report presents the findings from a fish passage survey conducted on various types of highway culverts. The survey includes 39 culverts located throughout the state of Oregon. To simplify the findings, the report places the 39 Oregon culverts into four categories: (1) pipes and pipe-arches with no special provisions for fish passage, (2) pipes and pipe-arches with special provisions for fish passage, (3) pipes and pipe-arches with natural stream beds, and (4) arches. Based upon the survey, the report concludes that culverts with natural stream bed surfaces provide the best facilities for passing fish. The report, also, presents procedures and criteria for designing and installing highway culverts that must pass fish. From the presented survey findings and the recommended design and installation methods contained in the report, the reader should, therefore, be able to resolve most problems associated with designing and installing highway culverts to pass fish.

ACKNOWLEDGMENTS

The author would like to thank the following individuals for their participation in the fish passage study:

Dr. Peter Klingeman, Civil Engineering Professor, Oregon State University William Howard, Civil Engineering Technician, WFLHD
James Bryant, Civil Engineering Technician, WFLHD
Jay Massey, District Fishery Biologist, Lower Willamette District, ODFW
Jim Newton, District Fishery Biologist, Columbia District, ODFW
Duane West, District Fishery Biologist, LaGrande District, ODFW
Ken Witty, District Fishery Biologist, Wallowa District, ODFW
Jim Phelps, District Fishery Biologist, Umatilla District, ODFW
Errol Claire, District Fishery Biologist, John Day District, ODFW
Ed Schwartz, District Fishery Biologist, Ochoco District, ODFW
Ted Fies, District Fishery Biologist, Bend District, ODFW
John Haxton, District Fishery Biologist, West Slope-Molalla District, ODFW
Jerry MacLeod, District Fishery Biologist, Siuslaw District, ODFW

The author would also like to thank the WFLHD Word Processing Unit consisting of Susan O'Shea, Cindy Story, Wilma Snelson, Gina Walker, Margie Zoller, and Jean Coad for their time and patience in the preparation of this report.

TABLE OF CONTENTS

TOP 10	2																											PAGE
INTRO	DUCTI	ON			•				٠			•			•	•			•	٠	•		•		•	•		1
EVAL	JATION ODFW WFLHD Desig	Cr C	it	er te	ia ri	a	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	:	:	2 7 8 12
RESUL	TS.	•		•	•	•		•		•	•	•	•		•				•					•	•	•	•	16
CONCL	USION	IS				•					•				•	•					•	•	•	•				30
RECOM	MENDA Desig Desig Insta	n n	Pr Cr	oc it	ed er	ur ia	es	•	:	:	:	•	•	•	•	:	:	•	•	•	•	:	•	•	•	:	•	31 31 32 34
REFER	RENCES					•	•	•	•	•						•	•		•	•	•	•			•		•	38
APPEN	NDIX A		ΊE	LD	D	ΑT	Α	CH	łEC	κı	.19	ŝΤ						•									•	A-1
APPEN	NDIX B		10	N	F0	RM	ıs				•								•						•			B -1
APPEN	NDIX C		НҮ	'DR	OL.	.00	Υ																			•		C - 1
APPEN	NDIX D STREA		СН	IAN	INE	L	н	/DF	RAU	JL]	CS	5																D-1
APPEN	NDIX E		. D	ES	IG	iN	Sł	1E E	ET\$	ò				•										•				£-1
APPE	NDIX F STREA		BE	D	MΑ	TE	R	[Al	. 0	ìR/	AD/	AT)	101	V [)A	ГΑ												F-ì
APPEN	NDIX G	•	SC	:011	'R	A۱	IAI	.γς	SIS	:																		G-1

LIST OF TABLES

		Page
1.	Summary of Evaluations for Arches	17
2.	Summary of Evaluations for Pipes and Pipe-Arches with Natural Stream Beds	17
3.	Summary of Evaluations for Pipes and Pipe-Arches with Special Features	18
4.	Summary of Evaluations for Pipes and Pipe-Arches with No Special Features	18
5.	Summary of Primary Hydraulic Parameters for Arches	19
6.	Summary of Primary Hydraulic Parameters for Pipes and Pipe-Arches with Natural Stream Beds	20
7.	Summary of Primary Hydraulic Parameters for Pipes and Pipe-Arches with Special Features	21
8.	Summary of Primary Hydraulic Parameters for Pipes and Pipe-Arches with No Special Features	21
9.	Fish Speeds of Average Size Adult Salmon and Steelhead Trout, as Reported by Bell (1973)	24
	LIST OF FIGURES	
		Page
1.	Four Classes of Culverts	3
2.	Location Map	6
3.	Swimming Performance of Salmon and Trout From Evans and Johnston (1980)	24
4.	Headwater to Rise Ratio Versus Fish Passage Capability	25
5.	Culvert Barrel Velocity to Stream Channel Velocity Ratio Versus Fish Passage Capability	26
6.	Computed Outlet Scour Versus Fish Passage Capability	27
7.	Foundation Condition Versus Fish Passage Capability	28
8.	Computed Outlet Scour Versus Observed Scour	29

LIST OF SYMBOLS AND DIMENSIONS

Q2	Two year flood, in cubic feet per second (cfs)
Q50	Fifty year flood, in cubic feet per second (cfs)
Vch	Natural channel velocity, in feet per second (fps)
Vb	Culvert barrel velocity, in feet per second (fps)
НЖ	Headwater at culvert inlet, in feet (ft)
R	Rise of culvert, in feet (ft)
Nch	Manning's roughness value for the natural channel
Nb	Manning's roughness value for the culvert barrel
S .	Stream channel slope, in feet per foot (ft/ft)
D50	Particle size from gradation curve such that 50 percent of the mixture is finer by weight, in feet (ft)
D	Pipe diameter or rise, in feet (ft)
Ke	Culvert inlet loss coefficient
Н	Energy head for culvert flowing full, in feet (ft)
dc	Critical depth, in feet (ft)
TW	Culvert tailwater, in feet (ft)
ho	Height of hydraulic grade line above outlet invert, in feet (ft)
L	Culvert barrel length, in feet (ft)
So	Culvert barrel slope, in feet (ft)
VO	Culvert outlet velocity, in feet per second (fps)
MO	Width of culvert outlet, in feet (ft)
Α	Flow area at the culvert outlet, in square feet (ft^2) , or culvert drainage area in square miles
YΕ	Equivalent depth at the culvert outlet, in feet (ft)
FR	Froude number

LIST OF SYMBOLS AND DIMENSIONS (Continued)

HS	Scour depth at culvert outlet, in feet (ft)
Р	Mean annual precipitation, in inches
F	Percent of basin forest
I	Precipitation intensity, in inches
ST	Area of lakes and ponds, in percent
TI	Mean basin January minimum temperature, in degrees
L	Length of channel, in miles

INTRODUCTION

In the autumn of 1987, the Western Federal Lands Highway Division (WFLHD) conducted a fish passage study of 39 stream culverts located in the state of Oregon. WFLHD had two primary goals in conducting the fish passage study. The first goal was to determine which type of culvert facilities provided the best fish passage. The second goal was to determine if current design practices would have identified these same culverts as providing the best fish passage facilities.

To meet these goals, WFLHD surveyed each site with a level and transit for topographic data, obtained stream bed gradations at each site, and obtained photographs of each culvert and its adjacent stream Concurrently, WFLHD sent questionnaires to Oregon Department of Fish and Wildlife (ODFW) personnel requesting them to evaluate the importance and capability of each culvert to pass fish. Once WFLHD obtained the field data and received the completed ODFW questionnaires, they performed a hydrologic and hydraulic analysis of each site using WFLHD culvert design procedures. From the WFLHD field data, the ODFW questionnaires, and the WFLHD culvert design analysis, WFLHD determined which culvert installations provided the best conditions for fish passage.

This report presents the detailed findings from the WFLHD study. In the process of presenting the findings, the report also provides an approach for designing culverts to pass fish. Hopefully, the presented findings and design procedures will resolve some of the current disagreements and problems associated with providing fish passage at stream culverts.

EVALUATION PROCEDURES

As stated above, the study consisted of a WFLHD field survey, the ODFW questionnaires, and a WFLHD design analysis of the culvert's fish passage capability. For their study, WFLHD placed the existing culverts into four classes of fish passage facilities. The four classes included the following:

- 1. Pipes and pipe-arches with no special provisions for fish passage.
- Pipes and pipe-arches with special provisions for fish passage. The special provisions primarily include baffles and fish ladder systems.
- 3. Pipes and pipe-arches with natural stream beds. This culvert type includes pipes and pipe-arches with their inverts set below the natural stream bed slope. Normally, the installer of the culvert will cover the invert with native stream bed material. Thus, the culvert will have a natural stream bed throughout its length.
- 4. Arches. The arch culvert typically consists of a half section of pipe with concrete or metal footings for foundation support. Since the footing system allows the culvert to span the stream channel width, the culvert will have a natural stream bed throughout its length like the culverts just described in Class 3.

Examples of these four classes are illustrated in Figure 1.

FIGURE 1. FOUR CLASSES OF CULVERTS

CLASS 3 (PIPE AND PIPE-ARCHES WITH NATURAL STREAM BEDS)

FIGURE I. FOUR CLASSES OF CULVERTS (CONTINUED)

WFLHD contacted each of the 23 ODFW District Fishery Biologists for a list of culverts that fit the above classes. However, WFLHD emphasized the culverts with a natural stream bed as the primary target of its study.

From the responses of the ODFW District Fishery Biologists, WFLHD targeted 65 culverts for the survey. Due to funding and time constraints, WFLHD reduced the number of culverts for their study to 48. After completing the field survey of the 48 culverts, WFLHD sent about 40 questionnaires to the respective fishery biologists for an evaluation of each culvert's passage capability.

Based upon the WFLHD data and the ODFW questionnaires, WFLHD compiled a final list of stream culverts for fish passage analysis. The list included six culverts with no special features for fish passage, six culverts with special features for fish passage, nine pipe and pipe-arches with natural stream beds, and 18 open bottom arches. Thus, the final list included a total of 39 stream culverts. Figure 2 shows the approximate locations of these 39 culverts.

For the 39 culverts, WFLHD collected field data that included the natural stream cross sections, the culvert dimensions and cross sections, the culvert types, and the types and dimensions of special features such as baffles and fish ladders. WFLHD also collected data on the locations and dimensions of culvert outlet scour and the locations and dimensions of any natural or manmade appurtenances such as log jams, adjacent culverts, and adjacent streams that may influence fish passage at the culvert site. Finally, they collected data on the gradation of the stream bed material and took

LOCATION MAP

representative photographs of the culvert and its surrounding stream environment. Appendix A contains the checklist for obtaining the WFHLD survey data.

ODFW Criteria

To complement the WFLHD field data, the ODFW District Fishery Biologists rated each selected culvert site for its respective fish passage capabilities. WFLHD asked the ODFW personnel to provide the following information for each culvert site:

- 1. Type and condition of species. For example, many of the culvert locations support coho salmon, winter steelhead, and resident trout. Also, some of the culvert locations were important to the development of juvenile fish as well as the passage of adult fish.
- Importance of installation to subject species. The ODFW personnel rated each location as either critical, moderate, or noncritical to the local or migratory fishery.
- Evaluation of installation. The ODFW personnel rated each location as either good, fair, or poor in its capability to pass fish.

In addition, the ODFW provided comments related to specific aspects of the culvert (i.e., "large drop at the outlet is an obstruction to upstream migration"). Appendix B contains the forms with the completed ODFW evaluations.

WFLHD Criteria

Using the field survey and the ODFW information, WFLHD analyzed and rated each culvert for its overall physical condition and its compatibility with the local stream environment. WFLHD used seven criteria. These criteria include the culvert condition, the culvert capacity, type of culvert foundation, condition of foundation, outlet scour, culvert stream bed surface, and the culvert hydraulics versus natural stream hydraulics. The culvert evaluation criteria were treated as follows:

- 1. Culvert condition. Based upon their field observations, WFLHD rated the overall physical condition of the culvert as either good, fair, or poor. If the culvert did not exhibit signs of roadway overtopping, foundation scour, barrel buckling, inlet or outlet damage, or any other defects that would make the culvert unserviceable, then they rated the culvert as good. If the culvert exhibited one of these defects, then they rated the culvert as fair. If the culvert exhibited more than one defect or if one defect was so severe that the culvert was highly susceptible to failure (i.e., excessive foundation scour), then they rated the culvert as poor. In general, this rating shows the culvert's ability to service the transportation system it serves.
- 2. Culvert capacity. Using the 50-year flood frequency, WFLHD determined the inlet headwater to pipe diameter ratio for each culvert. If the culvert was not circular, then they substituted the culvert rise for the pipe diameter. If the HW/R ratio was less than or equal to 1.0, they rated the culvert as good. If the HW/R ratio was greater than 1.0 but

less than or equal to 1.5, they rated the culvert as fair. For ratios greater than 1.5, they rated the culvert as poor. In general, this rating shows the chance of roadway overtopping during a major flood event. This rating also indirectly shows the constriction of the culvert upon the natural stream flow (i.e., HW/R ratio greater than 1.0). If a culvert constricts the natural channel too much, it may induce high inlet velocities that impede the passage of fish.

- 3. Type of culvert foundation. Footings or surrounding materials in the form of a closed loop (i.e., ring compression) normally support the culvert. WFLHD found the culverts in the study to be either "open" or "closed." They further found that either concrete or metal footings supported the open or arch culverts. They used this information in the evaluation of the other criteria.
- 4. Condition of foundation. Based upon their field observations, WFLHD rated the condition of the culvert foundation as good, fair, or poor. For a closed culvert, they rated the culvert as good if there was little evidence or chance that the culvert would settle or collapse. In this case, the culvert had good foundation materials and the adjacent stream flow was not likely to remove these materials. For an arch or open culvert, if nonerosive material supported the footings (i.e., bedrock), then they rated the culvert foundation as good. If the installer located the footings a reasonable distance below the expected scour depth, then they also rated the culvert foundation as good.

For both the closed and open culverts, WFLHD rated the foundations as fair if there was a chance of foundation failure during a major flood event or the culvert already exhibited slight signs of foundation failure. If the culvert foundation had already exhibited significant settlement, then they rated the foundation as poor. Also, if the footings exhibited either signs of undermining due to stream flow or were highly susceptible to scour failure during a minor to major flood event, then they rated the foundation as poor. In general, if they rated the culvert foundation as poor, this could significantly lower the rating of the culvert's overall condition.

5. Outlet scour. Based upon their field observations, WFLHD rated the culvert outlet scour condition as either severe, moderate, or negligible. If the scour depth was 1.5 feet or greater, they rated the outlet scour as severe. If the scour depth was less than 1.5 feet but greater than 0.5 feet, they rated the culvert outlet scour as moderate. If the scour depth was less than or equal to 0.5 feet, they rated the culvert outlet scour as negligible. WFLHD measured the scour depth at the culvert locations during low flow periods. Therefore, the actual outlet scour depths during flood events is probably much greater.

In general, this criteria shows whether or not a significant difference in elevation will develop between the culvert end and the natural stream bed located just downstream. The reader should not confuse this item with natural lowering of the stream bed over time and space (i.e., degradation). Nor should the reader confuse this item with the scour of

natural stream bed materials that may occur within the culvert barrel due to flood events.

- 6. Culvert stream bed surface. The stream bed surface at a culvert normally consists of the culvert barrel material (i.e., metal or concrete) or natural stream bed materials. The term natural stream bed materials includes materials native to the area or any other materials that would provide flow or sediment characteristics native to the area (i.e., clays, silts, sands, gravel, cobbles, boulders). This item is important for determining the barrel velocities and the scour potential within the culvert area. In general, a natural stream bed surface should generate hydraulic and sedimentation conditions compatible with the natural stream environment.
- 7. Culvert hydraulics versus natural stream hydraulics. Using the 2-year flood and the 50-year flood, WFLHD computed the culvert barrel depths and velocities and the natural stream depths and velocities. If the barrel velocities did not exceed the natural stream velocities by more than 50 percent, they rated the culvert as being compatible. Otherwise, they rated the culvert as incompatible with the natural stream environment. In addition to the velocity criteria, they also subjectively considered the constriction of the culvert barrel and the culvert outlet scour in the compatibility rating.

Finally, WFLHD provided general comments related to specific aspects of the culvert installation (i.e., "the short culvert length permits fish to pass

upstream through the barrel despite high velocities"). These comments are included in Appendix B.

Design Analysis

To complete the final portion of the study, WFLHD used their design procedures for analyzing the hydrologic and hydraulic characteristics of each culvert. The following is a brief outline of the main steps in their analytical approach:

- 1. WFLHD determined the 2-year and 50-year flood values for each of the culvert sites. WFLHD typically uses the 2-year flood for checking the fish passage characteristics of the culvert. For the culvert's serviceability to the transportation system, they normally use the 50-year flood to check for roadway overtopping and inlet and outlet erosion. Since they found only one culvert site located near a gaging station, WFLHD used USGS regression equations to determine the flood peaks for each culvert (1)(2). Appendix C contains the hydrologic inputs and the computed values for the 2-, 5-, 10-, 25-, 50-, and 100-year flood for each culvert.
- Using the computed flood values and the topographic data obtained from the field survey, WFLHD computed the depth and velocity values for a typical channel section at each culvert location. For the hydraulic analysis, they used Manning's equation for uniform flow to determine the depth and velocity values (3). Specifically, they used three primary

inputs: first, a trapezoidal section to define the irregular stream cross section; second, an energy slope based upon the average stream bed slope within the vicinity of the culvert; and third, a roughness value based upon the local stream bed materials (3).

Appendix D contains the hydraulic inputs and the computed depths and velocities for the 2- and 50-year flood for each culvert. For informational purposes, Appendix D also contains the computed stream bed shear stress and the computed particle diameter that the stream can transport. For both of these values, WFLHD used the tractive force and permissible shear stress methods (3)(4).

3. Once WFLHD determined the natural stream hydraulics for each culvert location, they analyzed the hydraulics of each culvert. WFLHD specifically computed the culvert headwater to pipe rise ratio, the culvert barrel velocity, and the culvert outlet velocity. They derived these output values using the typical culvert cross-section area, the culvert bed roughness, the culvert inlet configuration, the culvert bed slope, and downstream influences (i.e., log barriers, adjacent streams).

WFLHD computed the headwater to pipe rise ratio and the culvert outlet velocity using standard culvert design methods (i.e., inlet control, outlet control). FHWA publication "Hydraulic Design Series No. 5" contains the appropriate design methods (5). For the culvert barrel velocity, WFLHD normally computed this value using the same Manning's equation described above under Item 2. Of course, they substituted the culvert cross section, the culvert slope, and the culvert bed

roughness for the natural stream characteristics. Appendix E contains the culvert design sheets for each location. These sheets contain the above input and output values for the 2-year and 50-year floods.

4. After they completed the culvert hydraulics, WFLHD computed the outlet scour using the methods contained in FHWA publication "Hydraulic Engineering Circular No. 14" (6). The circular presents a method in chapter V for computing the outlet scour for clay size to fine gravel sized particles. Appendix F contains the stream bed gradations for each culvert site included in the WFLHD study. Appendix F shows the stream bed gradations to range from fine gravel to coarse gravel. For this reason, WFLHD used the method contained in chapter XI of Circular No. 14 to compute the outlet scour. They used this information to determine whether or not the field survey should have shown scour at the culvert outlet.

Appendix G contains the input values and the corresponding computed scour depths for the 2-year and 50-year floods. Although WFLHD used both methods from Circular No. 14 to check for outlet scour, Appendix G contains only the results from the method presented in chapter XI. Specifically, WFLHD input the design discharge, the culvert outlet velocity, the culvert width, the stream bed particle size, and the tailwater depth at the culvert outlet. For the stream bed particle size,

they normally used the particle size of the gradation of such that 50 percent of the mixture is finer by weight. For the tailwater depth, they normally used the computed downstream channel depth from Manning's equation unless field conditions indicated other downstream controls (i.e., log weirs, flood waters from adjacent streams).

5. Finally, WFLHD compared stream channel velocities, culvert barrel velocities, and the stream bed material gradations to the maximum permissible velocities that will not cause erosion of the channel body. For their study, WFLHD used the Fortier and Scobey maximum permissible velocity values (3). They used this information primarily for rating the foundation condition of arches. For example, if the culvert footings were only 1 to 2 feet below the stream bed and the culvert velocities exceeded the maximum permissible velocities, then they rated the foundation condition lower than otherwise. However, they did not compute scour depths within the culvert because of insufficient information on the sediment transporting capability of each stream. Therefore, WFLHD used this parameter as a guide in their subjective evaluation of the foundation condition of arches.

RESULTS

Tables 1, 2, 3, and 4 summarize the WFLHD and ODFW evaluations for the fish passage study. Tables 5, 6, 7, and 8 summarize the primary hydraulic parameters used in the WFLHD evaluations. Based upon a review of these tables, WFLHD presents the following summary of the results:

- 1. ODFW personnel rated the arch as a good facility for passing fish (Table 1). ODFW personnel generally rated the pipes and pipe-arches with natural stream beds as good for fish passage (Table 2). The ODFW evaluators gave poor or fair ratings to the pipe and pipe-arches with special passage features (Table 3), while they gave mixed ratings to the pipes and pipe-arches with no special features (Table 4).
- WFLHD personnel generally gave good ratings for the overall physical condition, the culvert capacity, and the foundation condition to pipes and pipe-arches with and without special features. WFLHD personnel also gave good ratings to pipes and pipe-arches with natural stream beds for the same criteria. While they gave fair or good ratings for the hydraulic capacity of arches, the WFLHD personnel gave poor or fair ratings for the arches' overall physical and foundation conditions.
- 3. WFLHD personnel generally rated outlet scour as negligible for arches and culverts with natural stream beds. Conversely, their ratings on outlet scour ranged from negligible to severe for culverts with and without special features.

TABLE 1. SUMMARY OF EVALUATIONS FOR ARCHES													
		SPAN	RISE	OVERALL	CULVERT	FOUNDATION	OUTLET	HYDRAULIC	PASSAGE				
STREAM NAME	REF. NO	FT	FT	CONDITION	CAPACITY	CONDITION	SCOUR	COMPATIBILITY	CAPABILITY				
Cool Creek	1-C	14.7	9.5	Poor	Fair	Fair	Negligible	Compatible	Good				
Lost Creek	1-D	18.2	5.6	Fair	Good	Poor	Negligible	Compatible	Good				
Little Looking													
Glass Creek	14-B	17.6	8.0	Fair	Good	Poor	Negligible	Incompatible	Good				
Devil's Run													
Creek	D-6	10.2	4.5	Fair	Good	Poor	Negligible	Compatible	Good				
Gumboot Creek	D-8	15.0	8.5	Fair	Good	Poor	Negligible	Compatible	Good				
Elk Creek	15-D	13.9	6.1	Fair	Good	Poor	Negligible	Compatible	Good				
Chesnimus Creek	15-ξ	11.0	5.7	Fair	Fair	Poor	Negligible	Compatible	Good				
Crow Creek	15-F	12.8	5.0	Good	Poor	Good	Negligible	Compatible	Good				
Ruby Creek	12-0	8.0	4.0	Good	Fair	Fair	Negligible	Compatible	Good				
Big Creek	12-E	12.0	7.0	Poor	Fair	Poor	Moderate	Compatible	Good				
Indian Creek	12-F	12.0	7.0	Poor	Fair	Poor	Moderate	Compatible	Good				
Granite Creek	12-G	12.8	5.3	Fair.	Good	Poor	Negligible	Compatible	Good				
Gramite Creek	12-H	13.1	6.8	Fair	Good	Poor	Negligible	Compatible	Good				
Granite Creek	12-I	13.2	6.9	Poor	Good	Poor	Negligible	Compatible	Good				
Marks Creek	11-A	18.0	8.8	Good	Good	Fair	Negligible	Compatible	Good				
Lowe Creek	2-A	21.7	11.7	Fair	Good	Poor	Moderate	Compatible	Good				
Haight Creek	7-A	18.2	8,9	Fair	Good	Fair	Negligible	Compatible	Good				
Eames Creek	7-B	13.8	6.9	Fair	Fair	Fair	Negligible	Compatible	Good				

	TABLE 2.	SUMMARY	OF EVA	LUATIONS FOR	PIPES AND	PIPE-ARCHES	WITH NATURAL S	TREAM BEDS	
		SPAN	RISE	OVERALL	CULVERT	FOUNDATION	OUTLET	HYDRAULIC	PASSAGE
STREAM NAME	REF. NO	FT	FI	CONDITION	CAPACITY	CONDITION	SCOUR	COMPATIBILITY	CAPABILITY
Newell Creek	1-B		14.0	Good	Good	Good	Negligible	Compatible	Good
Meacham Creek	13-A	12.8	14.0	Good	Good	Good	Negligible	Compatible	Fair
Meacham Creek	13-8		15.0	Good	Good	Good	Negligible	Compatible	Fair
Meacham Creek	13-C	14.0	15.0	Good	Good	Good	Negligible	Compatible	Fair
Meacham Creek	13-0	20.0	20.0	Good	Good	Good	Negligible	Compatible	Good
Middle Fork of									
Canyon Creek	12-8	13.5	8.5	Good	Good	Good	· Negligible	Compatible	Good
Canyon Creek	12-Ç		10.0	Fair	Good	Good	Negligible	Compatible	Good
Sunflower Creek	12-J	17.3	10.0	Good	Good	Good	Negligible	Compat1ble	Good
Brown's Creek	10-A	12.6	9.4	Good	Good	Good	Negligible	Compatible	Good

					. ,				
	TABLE 3.	SUMMA	RY OF	EVALUATIONS F	OR PIPES AN	D PIPE-ARCHES	WITH SPECIAL	FEATURES	
		SPAN	RISE	OVERALL	CULVERT	FOUNDATION	OUTLET	HYDRAULIC	PASSAGE
STREAM NAME	REF. NO	<u>FT</u>	<u>FT</u>	CONDITION	CAPACITY	CONDITION	SCOUR	COMPATIBILITY	CAPABILITY
Mt. Scott									
Creek	1-A	10.0	8.0	Good	Good	Good	Severe	Incompatible	Poor
Mottet Creek	14-A	5.8	7.0	Good	Fair	Good	Negligible	Incompatible	Fair
Billy Creek	C-3	6.3	5.0	Good	Good	Good	Negligible	Incompatible	Fair-Poor
Camp Creek	B-2		8.0	Fair	Poor	Good	Severe	Compatible	Fair
Doe Creek	C-4	7.7	5.4	Good	Good	Good	Negligible	Incompatible	Fair-Poor
Poop Creek	2-B		4.0	Good	Good	Good	Moderate	Incompatible	Fair

	TABLE 4.	SUMMARY	OF EVA	ALUATIONS FOR	PIPES AND	PIPE-ARCHES	WITH NO SPECIA	<u>L FEATURES</u>	
		SPAN	RISE	OVERALL	CULVERT	FOUNDATION	OUTLET '	HYDRAULIC	PASSAGE
STREAM NAME	REF. NO	FT	FT	CONDITION	CAPACITY	CONDITION	SCOUR	COMPATIBILITY	CAPABILITY
Polallie Creek	C-7	12.7	7.25	Good	Fair	Good	Moderate	Incompatible	Good
Tamarack Gulch	15-A	6.0	3.9	Good	Good	Good	Negligible	Incompatible	Good
South Fork									
Chesnimus Creek	15-B		6.7	Good	Good	Good	Moderate	Incompatible	Fair
Sheep Creek	13-€		7.0	Good	Good	Good	Negligible	Incompatible	Poor
Canyon Creek	12-A	12.6	1.8	Good	Fair	Good	Severe	Incompatible	Fair
Pine Creek	3-A		7.5	Fair	Fair	Good	Severe	Incompatible	Good

TABLE 5. SUMMARY OF PRIMARY HYDRAULIC PARAMETERS FOR ARCHES																			
								Q2			Q50	· · · · · · · · · · · · · · · · · · ·						Q2	Q50
		SPAN	RISE	Q2	Q50	Q50	Vch	٧b		Vch	٧b					S	D50	Scour	Scour
STREAM NAME	REF. ND	FT	<u>_FT</u>	<u>cfs</u>	CFS	HW/R	FPS	<u>FPS</u>	Vb/Vch	<u>FPS</u>	<u>FPS</u>	Vb/Vo	h Nch	<u>Nb</u>	Nch/N	b FT/FT	<u>FT</u>	FT	<u>FT</u>
Cool Creek	1-C	14.7	9.5	145	365	1.1	4.3	4.6	1.1	5.5	6.3	1.1	.045	.045	1.0	.010	. 17	0.0	0.0
Lost Creek	1-D	18.2	5.6	255	650	0.8	5.3	5.8	1.1	7.0	8.2	1.2	.045	.045	1.0	.014	.06	0.0	0.0
Little Looking Glass Creek	14-B	17.6	8.0	195	560	0.8	3.7	6.0	1.6	4.7	8.0	7.7	.045	.045	1.0	.016	.08	0.0	0.0
Devil's Run																			
Creek	D-6	10.2	4.5	28	129	0.8	3.3	3.7	1.1	4.7	5.7	1.2	.040	.040	1.0	.014	.13	0.0	0.0
Gumboot Creek	D-8	15.0	8.5	142	444	0.6	4.4	5.8	1.3	5.9	8.2	1.4	.045	.045	1.0	.017	.21	0.0	0.0
Elk Creek	15 - D	13.9	6.1	71	333	0.8	3.5	3.9	1.7	5.7	6.0	1.1	.045	.045	1.0	010.	.17	0.0	0.0
Chesnimus Creek	15-E	11.0	5.7	91	381	1.3	3.5	1.8	0.5	5.0	7.6	1.5	.040	.040	1.0	.001	.12	0.0	0.0
Crow Creek	15-F	12.8	5.0	135	603	2.1	5.0	5.4	1.1	7.4	10.2	1.3	.040	.040	1.0	.012	.04	0.0	2.1
Ruby Creek	12-D	8.0	4.0	40	165	1.1	4.5	5.9	1.3	7.2	8.5	1.2	.040	.040	0.1	.030	.05	0.6	1.8
Big Creek	12-E	12.0	7.0	230	725	1.5	8.3	8.01	1.3	12. F	14.7	1.2	.040	.040	1.0	.044	.19	3.9	7.7
Indian Creek	12-F	12.0	7.0	185	590	1.2	7.7	9.6	1.2	10.8	13.1	1.2	.040	.040	1.0	.034	.15	2.8	5.8
Granite Creek	12-G	12.8	5.3	75	290	8.0	4.8	4.9	1.0	8.8	7.2	1.1	.040	.040	1.0	.012	.13	0.0	0.0
Granite Creek	12-H	13.1	6.8	75	290	0.6	4. ?	4.7	1.1	6.2	7.1	1.1	.045	.045	1.0	.015	.25	0.0	0.0
Granite Creek	12-I	13.2	6.9	95	350	0.5	6.4	6.2	1.0	9.0	9.0	1.0	.045	.045	1.0	.022	.17	0.0	1.2
Marks Creek	11-A	18.0	8.8	115	600	0.8	3.6	3.0	0.8	5.6	4.8	0.9	.040	.040	1.0	.003	.06	0.0	0.0
Lowe Creek	2-A	21.7	11.7	440	1160	0.7	9.7	10.5	1.1	12.1	14.7	1.2	.045	.045	1.0	.050	.13	2.8	7.2
Haight Creek	7-A	18.2	8.9	190	440	0.7	3.1	3.1	1.0	4.0	3.7	0.9	.040	.035	1.1	.002	.06	0.0	0.0
Eames Creek	7-B	13.8	6.9	280	640	<u>1.1</u>	3.9	4.0	1.0	5.0	7.4	1.5	.040	.035	1.1	.002			
Averages				155	484	1.0	5.0	5.5	1.1	6.9	8.4	1.2	.042	.042	1.0	.017	.13	0.6	1.5

TABLE 6. SUMMARY OF PRIMARY HYDRAULIC PARAMETER FOR PIPES AND PIPE-ARCHES WITH NATURAL STREAM BEDS

								. Q2			Q50		_			-		Q2	Q50
		SPAN	RISE	Q2	Q50	Q50	Vch	۷ь		Ych	٧ь					S	D50	Scour	Scour
STREAM NAME	REF. NO	FT	<u>FT</u>	<u>CFS</u>	<u>CFS</u>	HW/R	<u>FPS</u>	FPS	Vb/Vch	<u>FPS</u>	<u>FPS</u>	Vb/Vc	h Nch	<u>Nb</u>	Nch/N	<u> </u>	<u>FT</u>	FT	<u>FT</u>
Newell Creek	1-B		14.0	95	275	0.4	3.6	4.0	1.1	5.0	6.0	1.2	.045	.045	1.0	.010	10.	0.0	0.0
Meacham Creek	13-A	12.8	14.0	75	500	0.6	3.8	4.8	1.3	6.6	7.6	1.2	.045	.045	1.0	.013	.06	0.0	0.0
Meacham Creek	13 - 8		15.0	95	625	0.6	4.3	5.2	1.2	7.3	8.0	1.1	.045	.045	0.1	.013	.08	0.0	0.0
Meacham Creek	13-C	14.0	15.0	95	625	0.5	5.1	6.0	1.2	8.9	9.4	1.1	.045	.045	1.0	.020	.13	0.0	1.0
Meacham Creek	13-D	20.0	20.0	95	625	0.5	4.9	5.3	1.1	8.4	8.7	1.0	.045	.045	1.0	.014	.13	0.0	0.9
Middle Fork of																			
Canyon Creek	12-B	13.5	8.5	110	350	0.8	4.4	6.2	1.4	5.9	8.6	1.5	.045	.045	1.0	.022	.05	0.0	0.6
Canyon Creek	12-C		10.0	105	345	0.7	5.7	6.5	1.1	8.1	9.0	1.1	.040	.040	1.0	.018	.09	0.1	1.2
Sunflower Creek	12-J	17.3	10.0	135	485	0.6	4.9	7.0	1.4	7.4	10.8	1.5	.045	.045	1.0	.037	.21	0.3	3.0
Brown's Creek	10-A	12.6	9.4	100	415	<u>0.8</u>	3.2	4.2	1.3	4.7	6.1	1.3	.040	.035	1.1	.005	.04	0.0	0.0
Averages				101	472	0.6	4.4	5.5	1.2	6.9	8.2	1.2	.044	.043	1.0	.017	.09	0.0	0.7

TABLE 7. SUMMARY OF PRIMARY HYDRAULIC PARAMETERS FOR PIPES AND PIPE-ARCHES WITH SPECIAL FEATURES																			
								Q2			Q50		_					Q2	Q50
		SPAN	RISE	Q2	Q50	Q50	Vch	٧ь		Vch	٧b					S	D50	Scour	Scour
STREAM NAME	REF. NO	<u>F7</u>	FT	<u>CFS</u>	<u>CFS</u>	HW/R	<u>FPS</u>	<u>FPS</u>	Vb/Vch	FPS	<u>FPS</u>	Vb/Vc	h <u>Nch</u>	<u>Nb</u>	Nch/N	b FT/FI	FT	FT	<u>FT</u>
Mt. Scott Creek	1-A	10.0	8.0	110	330	0.7	4.7	11.0	2.3	6.6	15.0	2.3	.045	.015	3.0	.017	.06	4.3	8.0
Mottet Creek	14-A	5.8	7.0	125	375	1.4	6.7	16.4	2.4	9.0	20.5	2.3	.045	.024	1.9	.057	.17	8.5	13.3
Billy Creek	C-3	6.3	5.0	45	197	0.8	4.5	8.0	1.8	6,5	11.7	1.8	.040	.024	1.7	.023	.08	0.0	0.5
Camp Creek	B-2		8.0	153	619	2.0	6.8	8.4	1.2	10.1	13.8	1.4	.040	.040	1.0	.025	.06	1.7	6.6
Doe Creek	C-4	7.7	5.4	25	116	0.7	3.9	6.5	1.7	6.5	11.0	1.7	.040	.024	1.7	.026	.08	0.0	0.0
Poop Creek	2-B		4.0	10	<u>35</u>	0.6	<u>2.9</u>	8.0	2.8	4.8	11.5	2.4	.045	.024	<u>1.9</u>	.059	<u>. 17</u>	1.1	4.5
Averages				78	279	1.0	4.9	9.7	2.0	7.3	13.9	2.0	.043	.025	1.9	.035	.10	2.6	5.5

	<u>TA</u>	BLE 8.	SUMMAR	Y OF F	RIMARY	HYDRAU	LIC PA	RAMETE	S FOR P	IPES AN	D PIPE-	ARCHES	WITH NO	SPECIA	L FEATU	<u>res</u>			
								Q2			Q50		_					Q2	Q50
•		SPAN	RISE	Q2	Q50	Q50	Vch	٧b		Vch	Υb					S	D50	Scour	Scour
STREAM NAME	REF. NO	FT	FT	CFS	<u>CFS</u>	HW/R	FPS	FPS	Vb/Vch	FP\$	FPS	Vb/VcI	Nch	Nb	Nch/Nt	FT/FT	<u>FT</u>	<u>FT</u>	<u>FT</u>
1																			
Polallie Creek	C-7	12.7	7.25	425	1090	1.3	9.2	21.5	2.3	11.6	29.5	2.5	.045	.015	3.0	.043	.25	13.5	22.9
Tamarack Gulch	15-A	6.0	3.9	11	55	0.7	2.9	5.5	1.9	4.7	9.6	2.0	.040	.024	1.7	.033	.02	0.9	3.3
South Fork																			
Chesnimus Creek	15-B		6.7	23	107	0.6	3.6	8.0	2.2	5.3	12.5	2.4	.040	.024	1.7	.030	.06	2.3	5.6
Sheep Creek	13-E		7.0	20	150	0.7	4.5	9.0	2.0	9.1	16.0	1.8	.050	.024	2.1	.053	.25	1.4	8.4
Canyon Creek	12-A	12.6	8.1	215	675	1.2	6.8	11.1	1.6	9.1	15.6	1.7	.045	.024	1.9	.020	.07	4.3	8.1
Pine Creek	3-A		7.5	250	665	1.5	8.1	13.7	<u>1.7</u>	10.2	<u> 17. T</u>	1.7	.045	.024	1.9	.026	.13	6.8	10.5
Averages				157	457	1.0	5.9	11.5	2.0	8.3	16.7	2.0	.044	.023	2.1	.034	.13	4.9	9.8

- 4. WFLHD personnel rated the hydraulic compatibility of arches and culverts with natural stream beds as compatible. However, they rated the hydraulic compatibility of culverts with and without special features as incompatible.
- 5. For the 50-year flood (Q50), Tables 5 through 8 show an average headwater to rise ratio of 1.0 for all culvert classes except for the pipe and pipe-arches with natural stream beds. For these culverts, the headwater to rise ratio is 0.6.
- 6. For the 2-year flood (Q2), Tables 5 and 6 show the culverts with natural stream beds and the arches have culvert barrel velocities that on average exceed the natural stream channel velocity by 10 to 20 percent. According to Tables 7 and 8, the culvert barrel velocity is twice the natural stream channel velocity for the culverts with and without special passage features.
- 7. For the 2-year flood, Tables 5 and 6 show the average computed outlet scour for culverts with natural stream beds and arches as 0.0 foot and 0.6 foot, respectively. According to Tables 7 and 8, the culverts with and without special features have average computed outlet scours of 4.9 feet and 2.6 feet, respectively.
- 8. For the 2-year flood, Tables 5 through 8 show the average stream channel velocity to be 4.4 feet per second to 5.9 feet per second for the four culvert classes. For the 50-year flood, the stream channel velocities

averaged from 6.9 feet per second to 8.3 feet per second. For comparison, Table 9 and Figure 3 present fish speeds for various species and stream conditions (10). A comparison of these values to the computed barrel velocities illustrates that the arches and the culverts with natural stream beds provide the best fish passage facilities for various fish species.

For informational purposes, Figures 4 through 8 show the graphical relationships for several of the above key parameters. Specifically, Figures 4 through 6 show the relationship between fish passage capability and headwater to culvert rise ratio, fish passage capability and culvert barrel velocity to stream channel velocity ratio, and fish passage capability and computed outlet scour, respectively. Figure 7 shows the scatter of data for culvert foundation condition versus fish passage capability. Finally, Figure 8 shows the relationship between the observed outlet scour and the computed outlet scour.

Using simple linear regression analysis, Figures 5 and 8 show the strongest statistical relationships occur between fish passage ratings and the barrel/channel velocity ratio and between the observed outlet scour ratings and the computed outlet scour. Conversely, Figure 4 shows little or no relationship between the fish passage ratings and the headwater to rise ratio, while Figure 6 shows a weak relationship between the computed outlet scour and the fish passage capability of the culvert.

TABLE 9. Fish Speeds of Average Size Adult Salmon and Steelhead Trout, Bell (1973).

		Fish Speed (fps)	
Specie	<u>Sustained</u> b	Prolonged ^b	Burst
Steelhead	0-4.6	4.6-13.7	13.7-26.5
Chinook	0-3.4	3.4-10.8	10.8-22.4
Coho	0-3.4	3.4-10.6	10.6-21.5
Sockeye	0-3.2	3,2-10,2	10.2-20.6
Pink & Chum ^a	0-2.6	2.6-7.7	7.7-15.0

Pink and Chum salmon values estimated from leap heights of 3 to 4 feet at waterfalls.

b Called cruising and sustained, respectively, in Bell (1973).

FIGURE 3. Swimming performance of salmon and trout from Evans and Johnston (1980). Curve developed by Ziemer, State of Alaska, Department of Fish and Game.

FISH PASSAGE CAPABILITY

FIGURE 4

FISH PASSAGE CAPABILITY

FIGURE 5

FISH PASSAGE CAPABILITY

FIGURE 6

FISH PASSAGE CAPABILITY

FIGURE 7

OBSERVED OUTLET SCOUR

FIGURE 8

CONCLUSIONS

Based upon the information in the tables and appendices, the arches and the pipe and pipe-arches with natural stream beds are the best fish passage culverts. Also, the tables and appendices show that the WFLHD design analysis provides a good approach for rating the fish passage capabilities of the culverts. For example, the WFLHD analysis shows that the arches and culverts with natural stream beds should have barrel velocities comparable to the natural stream velocities. Furthermore, the analysis shows that outlet scour for these culverts should not be a problem. Since unnaturally high barrel velocities and outlet scour "holes" are normally the major impedances to fish passage at culvert sites, proper analysis of these items should insure a proper fish passage design (7).

Conversely, the ODFW ratings and the WFLHD survey and analysis show that the culverts with and without special features provide only fair fish passage characteristics. According to WFLHD analysis, these culverts are hydraulically incompatible with the local stream environment. of the culverts had mitigating features such as short lengths and downstream influences which allowed the fish to migrate upstream through the culvert (see Figure 1)(10). On the other hand, special features such as downstream ladder or weir systems in some instances became an impedance to fish passage during low flows. Thus, the culvert designer should analyze the special features such as baffles and downstream fish ladders for a variety of flow conditions. Also, these systems may require periodic maintenance.

RECOMMENDATIONS

Finally, WFLHD recommends the culvert designer use pipe and pipe-arches with natural stream beds instead of arches. With only a few exceptions, the installer could have placed a pipe or pipe-arch with a natural stream bed surface instead of the arch. However, if the installer can place the arch footings on bedrock or below the expected scour depth with proper structural support, then the arch may be a viable alternative. For their survey, WFLHD rated nearly all the arch foundations as poor or fair because of shallow footings placed on erosive material. As stated earlier, the stream velocities for the 2-year flood ranged from 4 to 6 fps, while the velocities for the 50-year flood ranged from 6 to 8 fps. Using the Fortier and Scobey maximum erosive velocities within the arch barrels. Thus, the arches with shallow footings on erosive materials (i.e., silt, sand, gravel) are highly susceptible to scour and final foundation failure during a large flood.

Design Procedures

Based upon the above, WFLHD recommends the following design procedures for culvert fish passage designs:

1. The designer should select a stream discharge for analyzing the fish passage characteristics and a stream discharge for analyzing the serviceability of the culvert. As a minimum, the designer should select the 2-year and 50-year floods for the respective analyses. If possible, the designer should analyze the hydraulic characteristics for other discharges such as 7-day highs and 7-day lows. Preferably, the designer should rate the hydraulic conditions of the stream and culvert for a wide variety of flow conditions (8).

2. Using the topographic data of the stream site and the selected culvert size, the designer should determine the pipe headwater-to-rise ratio for each of the selected discharges. Also, the designer should determine the culvert barrel depth and velocity and the natural stream channel depth and velocity for each of the same discharges. Concurrently, the designer should determine the culvert outlet depth and velocity and the corresponding culvert outlet scour. Finally, the designer should compare the computed stream channel and culvert depths and velocities against the maximum permissible values for stream erosion. For this analysis, WFLHD recommends the methods in the "Design Analysis" section of this report (i.e., USGS regression equations, FHWA HDS No. 5 and HEC 14).

Design Criteria

To aid in the above design process, WFLHD recommends the following culvert selection criteria:

The culvert headwater-to-rise ratio should not exceed 1.0. As a minimum, this criteria should be applicable to the discharge the designer selects for analyzing the serviceability of the culvert (i.e., 50-year flood). This item should insure that the culvert inlet does not excessively constrict the stream. Thus, this will reduce the chance of upstream

debris depositions and blockages and high inlet velocities that may impede fish passage.

- 2. The culvert barrel velocity should not exceed the natural stream channel velocity by more than 25 percent. As a minimum, this criteria should be applicable for discharges having a flood magnitude of 2 years or less. Ideally, the culvert barrel flow depths and velocities should match those of the natural stream channel as close as possible. However, natural streams may experience fluctuations in velocities as large as 50 percent from one stream section to the next for the same discharge. Thus, this criteria should insure reasonable passage of fish under most normal flow conditions.
- 3. The culvert outlet scour should not exceed 0.5 foot. As a minimum, this criterion should be applicable for discharges having a flood magnitude of 2 years or less. Ideally, the outlet scour should be nearly zero foot. However, the outlet scour depth will decrease as the stream flow decreases. Thus, the designer should expect the actual outlet scour during normal flow conditions to be less than the computed value for the 2-year flood.

Installation Criteria

WFLHD recommends the following installation procedures for pipe and pipe-arches with natural stream bed surfaces:

- 1. For culverts 10 feet or less in equivalent diameter, the installer of the culvert should set the barrel invert a minimum of 12 inches to 24 inches below the natural stream bed slope. For culverts with equivalent diameters larger than 10 feet, the installer should place the culvert barrel a minimum of one fifth the culvert rise below the natural stream bed slope.
- 2. The installer should fill the culvert barrel with materials that are similar to the natural stream bed materials. This will insure a culvert barrel roughness comparable to the stream channel roughness. Tables 5 and 6 show the culvert velocity will be comparable to the natural stream velocity if the culvert barrel roughness, Nb, is comparable to the stream channel roughness, Nch.

In some instances, the existing stream bed may consist of cohesive materials such as clays and silt. These materials may not be suitable for relocation into the culvert barrel due to a reduction in their cohesiveness during the installation. Instead, the installer should consider fine or coarse gravel for the culvert stream bed surface. Eventually, the culvert stream bed should reach a material composition comparable to the natural stream bed. This will occur as the stream

deposits clay and sand-size particles within the barrel during low flows and the stream transports the gravel size particles away during high flows.

Initially, during low flow periods, the stream flow could submerge into the stream bed gravel. This is likely to happen when the installer performs extensive excavation upstream and downstream of the culvert and directly underneath the culvert for foundation purposes. Although the stream bed should eventually "seal" itself with the deposition of finer materials, the installer should consider placing a nonpermeable barrier between the stream bed materials and the foundation materials. This action should reduce the potential of the stream flow to submerge.

- 3. The installer should place the culvert barrel materials described under Item 2. to match the original or local stream bed elevations. This should insure a bed slope through the barrel comparable to the local stream bed slope.
- 4. The installer should place the culvert barrel itself on as flat a slope as possible. In general, the installer should limit culvert barrel to a slope steepness of 2 percent. This criteria should encourage barrel deposition of new materials during low flows to replace existing materials transported away during high flows. If the installer must place the culvert barrel on a slope steeper than 2 percent, then the installer should consider placing baffles inside the barrel to retain the stream bed materials (9).

The installer should also consider the sediment transporting capability of the stream before deciding on the final slope of the culvert barrel. Furthermore, the installer should consider the depth of materials placed within the culvert and the culvert's impact upon the hydraulics (i.e., velocity) before a final decision. If the culvert bed material depth is more than the expected local scour depth, then the culvert barrel slope may be irrelevant to maintaining a natural stream bed material within the culvert. However, if the installer cannot meet these conditions, then the installer should consider flattening the culvert barrel slope.

- 5. If the installer cannot develop a culvert layout that matches the hydraulic design criteria, then the installer should consider placing small boulders within the culvert. The boulders should reduce the overall barrel velocities as well as create a velocity profile comparable to that of a natural stream. In general, a culvert velocity profile that varies similar to the natural stream profile may be more important than the overall barrel velocity. For example, most fish can travel against high water velocities for short distances as shown in Figure 2 and Table 9 (10). Thus, a series of small boulders within the culvert should reduce the chances that the fish will have to travel upstream through the culvert at sustained high speeds. If the installer places small boulders within the barrel, the installer should embed them into the culvert bed materials. To reduce the potential for debris collection, the boulders should not protrude more than 12 inches above the culvert bed surface.
- 6. If outlet scour is a possible problem, then the installer should place boulders just downstream from the culvert outlet. This should dissipate

the stream's energy and reduce the potential scour depth. However, if stream degradation downstream from the culvert is also a potential problem, then the whole culvert installation may require lowering to anticipate an overall lower stream bed surface. In other cases, the installer may eventually have to replace the culvert with a new culvert.

While the subject of fish passage will require more research, WFLHD believes that sufficient design methods exist to ensure that culverts can pass fish under normal flow conditions. Hopefully, this study supports this conclusion.

REFERENCES

- "Magnitude and Frequency of Floods in Western Oregon," 79-553, US Geological Survey, 1979.
- 2 "Magnitude and Frequency of Floods in Eastern Oregon," 82-4078, US Geological Survey, 1983.
- 3 Open Channel Hydraulics," Ven Te Chow, 1959.
- 4 "Design of Roadside Channels with Flexible Channels," HEC-15, Federal Highway Administration, April 1988.
- 5 "Hydraulic Design of Highway Culverts," HDS No. 5, Federal Highway Administration, September 1985.
- 6 "Hydraulic Design of Energy Dissipators for Culverts and Channels," HEC-14, Federal Highway Administration, September 1983.
- 7 "A Hydraulic Evaluation of Fish Passage through Roadway Culverts in Alaska," RD-85-24, Alaska Department of Transportation and Public Facilities, August 1985.
- 8 "Seasonal Frequency and Durational Aspects of Streamflow in Southeast and Coastal Alaska," RD-87-22, Alaska Department of Transportation and Public Facilities, March 1987.
- 9 "Fish Passage through Poplar Grove Creek," RD-87-15, Alaska Department of Transportation and Public Facilities, February 1987.
- "Analysis of Barriers to Upstream Fish Migration," Washington State University, January 1986.
- "Handbook of Steel Drainage & Highway Construction Products,"
 American Iron and Steel Institute, April 1983.
- 12 "Hydrology," HEC 19, Federal Highway Administration, August 1985.
- "Fish Passage through Culverts," Federal Highway Administration,
 March 1974.
- "Design Charts for Open-Channel Flow," HDS No. 3, Federal Highway Administration, May 1973.
- "Appendix to a Hydraulic Evaluation of Fish Passage through Roadway Culvert in Alaska Data Report," RD-85-24A, Alaska Department of Transportation and Public Facilities, May 1985.

NO. REFERENCE

- "Determination of Seasonal, Frequency, and Durational Aspects of Stream Flow with Regard to Fish Passage through Roadway Drainage Structures," RD-85-06, Alaska Department of Transportation and Public Facilities, November 1984.
- "Spawning Migration of Arctic Grayling through Poplar Grove Creek Culvert," RD-88-09, Alaska Department of Transportation and Public Facilities, March 1988.

APPENDICES TO OREGON CULVERT FISH PASSAGE SURVEY

October 1990

Western Federal Lands Highway Division, Federal Highway Administration

APPENDIX A

WFLHD FIELD DATA CHECKLIST

CHECKLIST FOR THE FIELD INVESTIGATION OF SELECTED OREGON CULVERTS

I. Stream Cross Sections

A. Location*

- 1. At the culvert outlet.
- At the culvert inlet.
- 3. At the location which is most representative of the natural stream section below the culvert outlet (i.e., 50 to 200 feet d/s from the culvert outlet).
- 4. At the location which is most representative of the natural stream section above the culvert inlet (i.e., 50 to 200 feet v/s from the culvert inlet).
- 5. At the location of maximum culvert outlet scour.
- B. Special Details Elevations and Distances of the Following Features Should Be Obtained:
 - The edge of water.
 - The top and bottom of footings and walls that support the culvert.
 - 3. The top and bottom of the culvert outlet and inlet.
 - High-water marks.

*Note: Measure distances between all cross sections.

II. Culvert Details

- A. Size (i.e., pipe diameter or maximum span and maximum rise)
- B. Type (i.e., structural plate pipe-arch, structural plate arch, corrugated metal pipe, structural plate pipe)
- C. Material (metal or concrete)
- D. Special Features
 - 1. Baffles.
 - Typical spacing and size, typical layout, and type (wood or metal).
 - Footings, support walls, metal cross ties.
 - Typical size, typical layout, type (concrete or metal).
 - Outlet features (man-made).
 - a. Type (i.e., log barriers, pools, and weirs, gabion baskets), typical layout, typical size.

III. Special Stream Features

- A. Culvert Outlet Scour
 - 1. Maximum length and width of scour hole.
- B. Deposition of Stream Bed Material Within the Culvert Barrel
 - Average depth, length, and width of deposited material.

C. Natural Barriers

- 1. Type (i.e., logs or rocks), typical size, typical layout (i.e., distance from culvert inlet or outlet).
- D. Surface Velocity Through Culvert Barrel
- E. Adjacent Streams and Man-Made Structures Which May Influence the Hydraulic Characteristics of the Culverted Stream
 - Distance and direction of adjacent streams and man-made structures from the culvert (i.e., inlet or outlet).
 - 2. Approximate dimensions of adjacent streams and man-made structures (i.e., average width and average depth of stream, length of bridge, pipe diameter).

IV. Stream Material Sampling

A. Location**

- 1. Upstream of culvert inlet.
- Downstream of culvert outlet.
- Inside Culvert Barrel.
- 4. Scour hole areas.

B. Quantity and Depth

- Standard material sample bags should be filled with enough material for performing sieve gradation analysis.
- Samples should extend to a depth of 12 inches into the existing stream bed.

^{**}Stream bed samples need not be taken at each of these locations if the material does not appear to differ in composition from location to location.

V. Photographs

- A. Facing Downstream from the Culvert Outlet
- B. Facing Upstream from the Culvert Inlet
- C. The Culvert Outlet
- D. The Culvert Inlet
- E. Special Features (i.e., scour holes, man-made structures, adjacent streams, log barriers within sight distance of the culvert location)

VI. Documentation

- A. "Hydraulic Site Evaluation" Form
- B. Standard Survey Field Books for Stream Cross-Section Data

APPENDIX B EVALUATION FORMS

EF. NO. 1-A	
EF. NO. 1-A	

FISH PASSAGE EVALUATION FORM

DATE: 10/15/87 DATA BY: Bill Howard, James Bryant
STREAM: Mt. Scott Creek ODF&W REP.: Jay Massey
LOCATION: Approximately 1 + mile off I-205 east on Sunnyside Road,
Clackamas County; T2S, R2E, Section 3
TYPE OF INSTALLATION: Concrete Box Culvert
DIMENSIONS: SPAN 10.0' RISE 8.0' DIAM.
LENGTH182'
GRADIENT01750 foot/foot
SPECIAL FEATURES: Fish baffles on approximately 4 foot spacings.
EVALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1. TYPE AND CONDITION OF SPECIES: Small runs of Coho salmon and
winter steelhead. Resident trout population also present.
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
CRITICAL X* MODERATE NONCRITICAL
*Critical for salmon and steelhead; important for resident trout.
3. EVALUATION OF INSTALLATION:
GOOD FAIR POOR X
4. COMMENTS: Baffle construction not adequate at downstream end of culvert. Water
spreads out over apron below lower baffle (fish do not have concentrated
flow to jump into). Probably not passable at moderate to low flow.
CORRECTION NEEDED - Add training walls to concentrate flow from lower
baffle to edge of the apron. The remainder of the installation looks
fine.

SHEET 2 OF 3

REF.	NO.] -A	

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

1.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR POOR
5.	OUTLET SCOUR:
	SEVERE X MODERATE NEGLIGIBLE
6.	CULVERT STREAM SURFACE
	METAL CONCRETEX NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS
	COMPATIBLE INCOMPATIBLEX
8.	COMMENTS: To mitigate the outlet problems, a log barrier system should
•	be installed downstream from the culvert outlet to create a pool
	extending into the culvert barrel. The pool would reduce outlet
	velocities and outlet scour depths. The pool would also provide
	sufficient flow depths for fish desiring passage through the culvert
	during low flow periods.

1Aa - Culvert Outlet

1Ab - Typical Stream Channel

REF		NO.	1 - B	
	•		. •	

FISH PASSAGE EVALUATION FORM

DATE: 10/15/87	DATA BY: Bill Howard, James Bryant
STREAM: Newell Creek	ODF&W REP.: Jay Massey
LOCATION: 1.75 miles south of	I-205 junction on Hwy. 213, Cascade Hwy.,
Clackamas County; T	2S, R2E, Sections 32 and 33
TYPE OF INSTALLATION: Steel	Structural Plate Pipe
DIMENSIONS: SPAN	RISE DIAM14'
LENGTH 438'	
GRADIENT 0.01	foot/foot_
SPECIAL FEATURES: Natural st	ream bed materials and boulders placed throughout
the culvert length.	
EVALUATION OF PASSAGE FACILIT	IES BY ODF&W PERSONNEL:
1. TYPE AND CONDITION	OF SPECIES: Small runs of Coho salmon and winter
steelhead. Also st	ream has resident trout population.
2. IMPORTANCE OF INSTA	LLATION TO SUBJECT SPECIES:
CRITICAL X* MO	DERATE NONCRITICAL
*Critical for coho	and steelhead and important for trout.
3. EVALUATION OF INSTA	ALLATION:
GOOD X FAIR _	POOR
4. COMMENTS:	
Excellent installation f	or fish passage.
	

SHEET 2 OF 3

REF. NO. 1-B	
--------------	--

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSON	EVALUATION	LLATION BY WFLHD PERSON	Т	CULVE	0F	EVALUATION
--	------------	-------------------------	---	-------	----	------------

١.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL _X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: While the above culvert could possibly be reduced in diameter
•	size without significantly affecting its ability to service the highway
	and fish passage, overall, the culvert is a good installation for the
	given design criteria and field conditions.
	given accign of the two discretes constitutions

1Ba - Culvert Outlet

1Bb - Typical Stream Channel

REF.	NO.	1-C	

FISH PASSAGE EVALUATION FORM

DATE: 10/19/87 DATA BY: Bill Howard, James Bryant
STREAM: Cool Creek ODF&W REP.: Jay Massey
LOCATION: 2-1/2 miles of US 26 on Still Creek Road, Clackamas County;
T3S, R7E, Section 24
TYPE OF INSTALLATION: Aluminum Structural Plate Arch
DIMENSIONS: SPAN 14.7' RISE 9.5' DIAM.
LENGTH 48'
GRADIENT 0.01 foot/foot
SPECIAL FEATURES: Open bottom arch. Top of footings appear to be 4 feet
below stream bed. Man-made pools were built at outlet with log and rock
barriers.
EVALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1. TYPE AND CONDITION OF SPECIES: Small runs of Coho salmon and winte
steelhead. Resident trout also in stream.
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
CRITICAL X* MODERATE NONCRITICAL
*Critical for salmon and steelhead; important for resident trout.
3. EVALUATION OF INSTALLATION:
GOOD X FAIR POOR
4. COMMENTS: Very good open bottom arch. Man-made pools at outlet ma
require periodic maintenance.

SHEET 2 OF

EVALUATION OF CULVERT	INSTALLATION	ΒY	WFLHD	PERSONNEL:
-----------------------	--------------	----	-------	------------

١.	CULVERT CONDITION:
	GOOD FAIR POOR _X
2.	CULVERT CAPACITY:
	GOOD FAIR X POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING _X CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR X POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: Despite the poor installation procedures, the Cool Creek
	culvert is a good fish passage design.

1Ca - Culvert Inlet

1Cb - Typical Stream Channel

REF.	NO.	1-D	

FISH PASSAGE EVALUATION FORM

DATE: 10/20/87 DATA BY: Bill Howard, James Bryant	
STREAM: Lost Creek ODF&W REP.: Jay Massey	
LOCATION: Spur Road 109, Clackamas County; T2S, R8E, Section 21	
TYPE OF INSTALLATION: Steel Structural Plate Arch	
DIMENSIONS: SPAN 18.2' RISE 5.6' DIAM.	
LENGTH 50'	
GRADIENT014 foot/foot	
SPECIAL FEATURES: Open bottom arch. Bottoms of concrete footings as	e esti-
mated to be only 2 feet below the existing stream bed.	
EVALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:	
1. TYPE AND CONDITION OF SPECIES: Fair runs of Coho salmon and	l winter
steelhead. Resident trout also in stream.	
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:	
CRITICALX* MODERATE NONCRITICAL	
*Critical for salmon and steelhead; important for resident	rout.
3. EVALUATION OF INSTALLATION:	
GOOD X FAIR POOR	
4. COMMENTS: Excellent open bottom arch arch.	

SHEET	2 0	F 3	
REF.	NO.	1-D	

FVALUATION	ΩF	CHI VERT	INSTALLATION	RY	WEI HD	PERSONNE1 +
E AMERIALION	Uľ	CULYERI	INDIALFAITON	DΙ	KL LUD	LTKJOMMTT.

1.	CULVERT CONDITION:
	GOOD FAIR X POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTINGX CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR POOR _X
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: While the above culvert provides good fish passage, a pipe
	culvert with its metal invert depressed below the natural stream bed
	would eliminate the possibility of a foundation failure during an extreme
	flood. Also, log and/or rock barriers could be installed downstream to

ensure that the "depressed" culvert did not lose its streambed material.

1Da - Culvert Outlet

1Db - Typical Stream Channel

REF. NO.	C-7
----------	-----

FISH PASSAGE EVALUATION FORM

DATE: 10/20/87	DATA BY: Bill	loward, James Brya	nt
STREAM: Polallie Creek	ODF&W REP	:Jim_Newton	
LOCATION: 23.2 miles south o	Hood River and I-8	34 junction on US	35, Hood
River County; T2S,	R10E, Section 5		
TYPE OF INSTALLATION: _Stee1	tructural Pipe-Arcl	1	
DIMENSIONS: SPAN 12.7'	RISE	DIAM.	
LENGTH110'			
GRADIENTO.O			
SPECIAL FEATURES: Pipe inv	rt is lined with c	oncrete. Another	pipe is
located at the site for flood	relief. The addit	ional pipe is a 7	foot
diameter corrugated steel pip	with no special f	eatures for fish	passage.
EVALUATION OF PASSAGE FACILIT	ES BY ODF&W PERSON	NEL:	
1. TYPE AND CONDITION	F SPECIES: May pr	ovide some rearing	g for resident
trout and possibly	small number of s	teelhead.	
2. IMPORTANCE OF INSTA	LATION TO SUBJECT	SPECIES:	
CRITICAL MO	ERATE NONC	RITICAL X	
3. EVALUATION OF INSTA	LATION:		
GOOD X FAIR	POOR		
4. COMMENTS: Polallie	Creek is an unstab	le, high gradient	, high
velocity stream with li	tle fish production	on potential. Th	is stream was
devastated by the sudde	draining of a gla	cial impoundment	on the slopes
of Mt. Hood in 1980.	The entire stream	was severely so	coured by the
ensuing flood, which al	o destroyed portio	ns of Highway 35	and miles of
the East Fork of Hood Ri	/er		
Polallie Creek has ne	er been considere	ed a significant	resident or
anadromous fish producer			

SHEET 2 OF 3

REF. NO. C-7______

EVAL	UATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:
1.	CULVERT CONDITION:
	GOOD X FAIR POOR POOR
2.	CULVERT CAPACITY:
	GOOD FAIR X POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSED X
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLE
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE _ X NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE INCOMPATIBLEX_
8.	COMMENTS: In general, the above facility is not considered a good
	installation for fish passage. If the culvert were to be replaced with
	fish passage as a design criteria, the culvert installation would
	probably require oversizing or the placement of baffles and/or natural

stream bed materials such as gravels and small boulders to sufficiently

reduce stream velocities through the culvert facility.

C7a - Culvert Outlet

C7b - Typical Stream Channel

DEE	NO	14-A
REF.	NU.	14-A

FISH PASSAGE EVALUATION FORM

DATE: 10/	DATA BY: Bill Howard, James Bryant
STREAM: M	ottet Creek ODF&W REP.: Duane West
	MP 7.6 on FS Road 63, Union County; T4N, R39E, Section 33
TYPE OF IN	STALLATION: Corrugated Steel Oval Pipe
DIMENSIONS	: SPAN 5.8' RISE 7.0' DIAM.
	LENGTH 110'
	GRADIENT 0.0573 foot/foot
SPECIAL FE	ATURES: Log weirs and pools are constructed at the outlet of the
culvert.	
EVALUATION	OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: There are good numbers of both
	rainbow trout and summer steelhead in this small tributary stream.
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD FAIR X POOR
4.	COMMENTS: This type of facility does an adequate job of passing fish
	however, it is not as good as the open bottom arch.

SHEET 2 OF 3

KEP. NU. 14-M	REF.	NO.	14-A	
---------------	------	-----	------	--

EVALUATION	0F	CULVERT	INSTALLATION	ΒY	WFLHD	PERSONNEL:

۱.	CULVERT CONDITION:
	GOODX FAIR POOR
2.	CULVERT CAPACITY:
	GOOD FAIR X POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSED _X
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL X CONCRETE NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE INCOMPATIBLEX
8.	COMMENTS: If the culvert were to be replaced in the future, the culvert
•	should be oversized and installed with baffles and/or natural stream bed
	materials such as gravels and small boulders. This type of facility
	would significantly reduce culvert velocities and provide flow
	characteristics similar to the natural stream channel. Thus, a culvert
	facility that can provide fish passage is possible at this site.

14Aa - Culvert Outlet

14Ab - Typical Stream Channel

REF. NO. 14-B	
---------------	--

DATE: 10	/22/87 DATA BY: Bill Howard, James Bryant
STREAM: L	ittle Looking Glass Creek ODF&W REP.: Duane West
LOCATION:	MP 4.5 on FS Road 63, Union County; T3N, R39E, Section 2,
TYPE OF I	NSTALLATION: Steel Structured Plate Arch
DIMENSION	S: SPAN 17.6' RISE 8.0' DIAM.
	LENGTH 110'
	GRADIENT 0.0164 foot/foot
SPECIAL F	EATURES: Open bottom arch. Gabion weirs at outlet.
EVALUATIO	ON OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Both rainbow trout and summer steel-
	head inhabit the stream. There are good numbers of both species.
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD X FAIR POOR
4.	COMMENTS: Little Looking Glass Creek is an important steelhead
	spawning and rearing stream. The stream above the culvert contains
	the best habitat.
	· · · · · · · · · · · · · · · · · · ·

REF.	NO.	14-B	
N ⊑1 •	NO	14-0	

EVALUATION	0F	CULVERT	INSTALLATION	ΒY	WFLHD	PERSONNEL:

1.	CULVERT CONDITION:
	GOOD FAIR _X _ POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING X CONCRETE FOOTING CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR POOR _X
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL _X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X
8.	COMMENTS: While the above culvert provides good fish passage, a pipe
	arch culvert with its metal invert depressed below the natural stream bed
	would eliminate the possibility of foundation failure during an extreme
	flood event. Also, log and/or rock barriers could be installed
	downstream to ensure that the local fishery could traverse the gabions
	though a series of pools and weirs.

14Ba - Culvert Outlet

14Bb - Typical Stream Channel

REF.	NO.	15-A	
\		10 /	

DATE: 10/24/87 DATA BY: Bill Howard, James Bryant	
STREAM: Tamarack Gulch ODF&W REP.: Ken Witty	
LOCATION: Near Enterprise, Wallowa County; T3N, R47E, Section 34	
TYPE OF INSTALLATION: Corrugated Metal Pipe-Arch	
DIMENSIONS: SPAN 6.0' RISE 3.9' DIAM. LENGTH 30.7' GRADIENT 0.0326 foot/foot	
SPECIAL FEATURES: None	
EVALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:	
1. TYPE AND CONDITION OF SPECIES: Summer steelhead - migratory a	nd
resident rainbow trout	
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:	
CRITICAL MODERATE NONCRITICALX	
3. EVALUATION OF INSTALLATION:	
GOOD X FAIR POOR	
4. COMMENTS:	

SHEET	72 (OF 3	
REF.	No.	15-A	

EVAL	UATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:
1.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL X CONCRETE NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X
8.	COMMENTS: Although this small, intermittent stream is not critical to
	the local fishery, a culvert with a rise and span comparable to the
	existing facility could easily be installed with a depressed invert. The
	depressed metal invert could be covered with small boulders and natural
	stream bed materials. This type of facility would significantly reduce
	culvert velocities and provide flow characteristics similar to the
	natural stream channel. Thus, a culvert facility that can provide fish
	The state of the s

passage is possible at this time.

15Aa - Culvert Outlet

15Ab - Typical Stream Channel

DEE	NO	1.E. D	
REF.	NU.	15-B	

DATE: 10/24/89 DATA BY: Bill Howard, James Bryant
STREAM: South Fork Chesnimus Creek ODF&W REP.: Ken Witty
LOCATION: South of junction of FS Roads 4690, 014, and 015 on FS Road 4690,
Wallowa County; T3N, R47E, Section 24
TYPE OF INSTALLATION: Corrugated Metal Pipe
DIMENSIONS: SPAN RISE DIAM6.7'
LENGTH
GRADIENT 0.03 foot/foot
SPECIAL FEATURES: None
EVALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1. TYPE AND CONDITION OF SPECIES: Summer steelhead trout - migratory
and resident rainbow trout.
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
CRITICAL MODERATE _X NONCRITICAL
3. EVALUATION OF INSTALLATION:
GOOD FAIR _X POOR
4. COMMENTS: Creek was dry when inspected on 11/8/88. The downstream
end of this culvert could be a barrier at lower stream flows.

SHEET 2 OF 3

REF. NO. 15-B

	EVALUATION (OF	CULVERT	INSTALLATION	BY	WFLHD	PERSONNEL:
--	--------------	----	---------	--------------	----	-------	------------

1.	CULVERT CONDITION:
	GOODX FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE _X NEGLIGIBLE
6.	CULVERT STREAM SURFACE:
	METAL X CONCRETE NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE INCOMPATIBLEX
8.	COMMENTS: If this culvert is to be replaced, it can be replaced with a
	culvert barrel area similar to the existing facility provided its invert
	is depressed below the natural stream bed gradient. The culvert invert
	should be backfilled with existing stream bed material and small boulders
	to reduce the barrel velocities. The existing scour hole at the outlet
	should also be backfilled with similar natural materials to match the
	stream bed gradient. These measures should provide a facility that
	blends well with the surrounding stream environment and fishery habitat.

15Ba - Culvert Outlet

15Bb - Typical Stream Channel

DEE	MO	D-6	
KEF.	NO.	D-0	

SHEET 2 OF 3
REF. NO. D-6

EVAL	UATION OF CULVERT	INSTALLATION	BY WFLHD PERSONNEL:
1.	CULVERT CONDITIO	N:	
	GOOD FAI	R <u>X</u> POOR	·
2.	CULVERT CAPACITY	:	
	GOOD X FAI	R POOR	!

5. OUTLET SCOUR:

SEVERE _____ MODERATE ____ NEGLIGIBLE _X

GOOD _____ FAIR ____ POOR _X

6. CULVERT STREAM SURFACE:

METAL ____ CONCRETE ____ NATURAL __X__

7. CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:

COMPATIBLE X INCOMPATIBLE _____

8. COMMENTS: While the above culvert provides good fish passage, a pipe-arch culvert with its invert depressed below the natural stream bed would eliminate the possibility of a foundation failure during an extreme flood event.

D6a - Culvert Outlet

D6b - Typical Stream Channel

RFF.	NO.	C-3	
W (C)	110.	0-0	

DATE: 10/25/87 DATA BY: Bill Howard
STREAM: Billy Creek ODF&W REP.: Ken Witty
LOCATION: Wallowa National Forest, Wallowa County; T3N, R47E, Section 7
TYPE OF INSTALLATION: Steel Structural Plate Pipe-Arch
DIMENSIONS: SPAN 6.3' RISE 5.0' DIAM.
LENGTH
GRADIENT 0.0228 foot/foot
SPECIAL FEATURES: Log weirs and gabions placed at outlet. An additional
48 inch diameter pipe has been installed for flood relief. The additional
48 inch pipe has no special features for fish passage.
EVALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1. TYPE AND CONDITION OF SPECIES: Summer steelhead trout - migratory
and resident rainbow trout
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
CRITICAL MODERATE _X NONCRITICAL
3. EVALUATION OF INSTALLATION:
GOOD FAIR X POOR X
Fair at high flows, poor at low flows.
4. COMMENTS: Billy Creek was dry in the vicinity of this culvert when
inspected on 11/8/88. This installation and the concerns with it are
similar to the situation on Doe Creek (Ref. #C-4). The weirs and gabions
below the culvert create barriers during low flows.

	EVALUATION	0F	CULVERT	INSTALLATION	BY	WFLHD	PERSONNEL
--	-------------------	----	---------	--------------	----	-------	-----------

1.	CULVERT CONDITION:
	GOOD X FAIR POOR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX_
6.	CULVERT STREAM SURFACE:
	METAL X CONCRETE NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE INCOMPATIBLE _X
0	COMMENTS - A sull and the sull
٥.	COMMENTS: A culvert with a rise and span comparable to the existing
	facility could be easily installed with a depressed invert. The
	depressed invert could be covered with small boulders and natural stream
	bed materials. This type of facility would significantly reduce culvert
	velocities and provide flow characteristics similar to the natural stream
	channel. If weirs are maintained at the site, then they should be
	designed to allow passage of fish during low flow periods by providing
	flow depths and widths comparable to the natural channel. Also, the
	water should be prevented from flowing under or through the weirs (i.e.,
	permeable rock gabions).

C3a - Culvert Outlet

C3b - Typical Stream Channel

REF.	NO.	B-2	
N L	110.	D-E	

DATE: 10	/26/87 DATA BY: Bill Howard, James Bryant
STREAM:	Camp Creek ODF&W REP.: Ken Witty
LOCATION:	1.75 miles from Imnaha on Road 380, Wallowa County, TIN, R48E,
	Section 20
TYPE OF I	NSTALLATION: Corrugated Metal Pipe
DIMENSION	S: SPAN RISE DIAM. 8.0'
	LENGTH 96.3'
	GRADIENT 0.0249 foot/foot
SPECIAL F	EATURES: Fish baffles on approximately 15 foot spacings.
EVALUATIO	N OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Summer steelhead trout/migratory
	and resident rainbow trout.
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD FAIR X POOR
4.	COMMENTS: There was approximately a 3.5 foot drop at the downstream
end	of this culvert on 11/8/88. It appears that this installation would
bloc	k upstream fish passage, but we know that adult steelhead make it up
Camp	Creek to spawn in the spring. This is one of our index streams for
stee	Thead spawning surveys and we have had good counts above this culvert
<u>in r</u>	ecent years.
Ther	e is a deep pool below the outlet of this culvert which probably
<u>allo</u>	ws the fish to jump into the culvert. There also would be less drop
from	this culvert in the spring when flows are higher in Big Sheep
Cree	ek

REF. NO. B-2

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

۱.	CULVERT CONDITION:
	GOOD FAIR X POOR
2.	CULVERT CAPACITY:
	GOOD FAIR POOR _X
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSED X
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE X MODERATE NEGLIGIBLE
6.	CULVERT STREAM SURFACE:
	METAL X CONCRETE NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE

8. COMMENTS: A larger culvert should be installed at this site to reduce potential flood damage to the roadway, to reduce barrel velocities prohibitive to fish passage, and to reduce the potential for outlet scour. The replacement culvert should be oversized and set below the existing stream bed elevation to provide a natural stream bed surface with gravels and boulders. The scour hole at the existing outlet should also be filled with gravels and boulders to provide a smooth transition from the Big Sheep Creek channel to the culvert outlet. With this type of in stallation, fish impediment due to high barrel velocities and an excessive vertical drop at the outlet would be significantly reduced to acceptable levels. At this time the backwater from the adjacent Big Sheep Creek possibly reduces the outlet culvert velocities and the vertical outlet drop during high flows. This would explain the passage of fish through the existing installation.

B2a - Culvert Outlet

B2b - Typical Stream Channel

DATE: 10/	23/87 DATA BY: Bill Howard, James Bryant
STREAM: DO	oe Creek ODF&W REP.: Ken Witty
LOCATION:	35 miles northeast of Enterprise, Wallowa National Forest,
	Wallowa County; T3N, R46E, Section 14
TYPE OF IN	STALLATION: Corrugated Metal Pipe-Arch
DIMENSIONS	: SPAN RISE DIAM
	LENGTH66.6'
	GRADIENT 0.0255 foot/foot
SPECIAL FE	ATURES: Log weirs and gabions placed at outlet
EVALUATION	OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Summer steelhead trout - migratory
,	and resident rainbow trout.
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL MODERATE _X NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD FAIR _X POOR _X
4.	Fair during high flows, poor during low flows. COMMENTS: Doe Creek was dry when I inspected this culvert on 11/8/88.
	It appears that this culvert was not set deep enough when the road
	was constructed and the weirs and gabions below the culvert were
	installed in an attempt to elevate the stream bed. The weirs are
	barriers to upstream and downstream passage at low flows.
	Downstream passage is a concern in these small streams because many
	of them function as nursery streams. Adult fish enter the streams
	and spawn soon after flows peak in the spring. The juvenile fish
	that hatch in these streams will often migrate to higher order
	streams in late summer or fall, when flows are low, to escape high
	temperatures or to seek suitable over-winter habitat. It appears
	that this installation would do a fair job of passing fish during
	high flows (spawning), but would not pass fish at low flows.

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

1.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL X CONCRETE NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE INCOMPATIBLEX
8.	COMMENTS: A culvert with a rise and span comparable to the existing
	facility could be easily installed with a depressed invert. The
	depressed invert could be covered with small boulders and natural stream
	bed materials. This type of facility would significantly reduce culvert
	velocities and provide flow characteristics similar to the natural stream
	channel. If weirs are maintained at the site, they should be designed to
	allow passage of fish during low flow periods by providing flow depths
	and widths comparable to the natural channel. Also, the water should be
	prevented from flowing under or through the weirs (i.e., permeable rock
	gabions.

C4a - Culvert Outlet

C4b - Typical Stream Channel

REF.	NO.	D-8	

DATE: 10/27/87 DATA BY: Bill Howard, James Bryant	
STREAM: Gumboot Creek ODF&W REP.: Ken Witty	
LOCATION: Southeast of Joseph on 39 Road, Wallowa County; T4S, R48E,	
Section 31	
TYPE OF INSTALLATION: Structural Plate Arch	
DIMENSIONS: SPAN 15.0' RISE 8.5' DIAM.	
LENGTH 69.0'	
GRADIENT 0.0174 foot/foot	
SPECIAL FEATURES: Open bottom arch	
EVALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:	
1. TYPE AND CONDITION OF SPECIES: Summer steelhead trout - migr	atory _
resident rainbow trout, bull trout	
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:	
CRITICAL X MODERATE NONCRITICAL	
3. EVALUATION OF INSTALLATION:	
GOOD X FAIR POOR POOR	
4. COMMENTS:	

REF. NO.	D-8	
----------	-----	--

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

1.	CULVERT CONDITION:
	GOOD FAIR _X POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING _X CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR POOR _X
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLE _X
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: A pipe-arch with a depressed metal invert could easily be
	installed at this site without altering the positive fish passage
	characteristics. While reducing the possibility of structural failure
	due to scour undermining. The depressed invert should be covered with
	stream bed materials similar to those located within the existing arch.
	This measure would ensure depth and velocity characteristics similar to
	the natural stream channel.

D8a - Culvert Inlet

D8b - Typical Stream Channel

R	EF.	NO.	15-D
٠,			, , ,

	REF.	NO.	15-D	
--	------	-----	------	--

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

۱.	CULVERT CONDITION:
	GOOD FAIR _X POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTINGX CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR POORX
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLE X
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE INCOMPATIBLE
8.	COMMENTS: A pipe-arch with a depressed metal invert could easily be
	installed at this site without altering the positive fish passage
	characteristics while reducing the possibility of structural failure due
	to scour undermining. The depressed invert should be covered with stream
	bed materials similar to those located within the existing arch. This
	measure would ensure the depth and velocity characteristics similar to
	the natural stream hed.

15Da - Culvert Outlet

15Db - Typical Stream Channel

REF.	NO.	15-E	

DATE: 11/	DATA BY: Bill Howard, James Bryant
STREAM: 0	Chesnimus Creek ODF&W REP.: Ken Witty
LOCATION:	Near Enterprise, Wallowa County; T3N, R47E, Section 21
TYPE OF IN	ISTALLATION: Structural Plate Arch
DIMENSIONS	S: SPAN 11.0' RISE 5.7' DIAM.
	LENGTH49.7'
	GRADIENT 0.001 foot/foot
SPECIAL FE	ATURES: Open bottom arch
EVALUATION	OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Summer steelhead trout - migratory
	and resident rainbow trout
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD X FAIR POOR POOR
4.	COMMENTS: Stream flow was intermittent when I inspected this culvert
	on 11/8/88.
	This culvert is on Chesnimus Creek at the mouth of Vance Draw.

KEF. NU. 15-E	REF.	NO.	15-E	
---------------	------	-----	------	--

EVALUATION	0F	CULVERT	INSTALLATION	ΒY	WFLHD	PERSONNEL:
------------	----	---------	--------------	----	-------	------------

۱.	CULVERT CONDITION:
	GOOD FAIR _X POOR
2.	CULVERT CAPACITY:
	GOOD FAIR X POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING X CONCRETE FOOTING CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR POOR _X
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
•	
8.	COMMENTS: A pipe-arch with a depressed metal invert could easily be
	installed at this site without altering the positive fish passage
,	characteristics while reducing the possibility of structural failure due
	to scour undermining. The depressed invert should be covered with stream
	bed materials similar to those located within the existing arch. This
	measure would ensure depth and velocity characteristics similar to the
	natural steam channel.

15Ea - Culvert Inlet

15Eb - Typical Stream Channel

REF. NO. 15-F	
---------------	--

DATE: 11/4/87 DATA BY: Bill Howard, James Bryant
STREAM: Crow Creek ODF&W REP.: Ken Witty
LOCATION: Northeast of Joseph on 46 Road, Wallowa County, T3N, R45E,
Section 35
TYPE OF INSTALLATION: Structural Plate Arch
DIMENSIONS: SPAN 12.8' RISE 5.0' DIAM.
LENGTH
GRADIENT 0.012 foot/foot
SPECIAL FEATURES: Open bottom arch. Another pipe is located at the site for
flood relief. The additional pipe is 4 foot diameter, corrugated steel pipe
with no special features for fish passage.
EVALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1. TYPE AND CONDITION OF SPECIES: Summer steelhead trout - migratory
and resident rainbow trout
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
CRITICAL X MODERATE NONCRITICAL
3. EVALUATION OF INSTALLATION:
GOOD X FAIR POOR
4. COMMENTS:

REF.	NO.	15-F
1,000	110	

	EVALUATION	0F	CULVERT	INSTALLATION	BY	WFLHD	PERSONNEL
--	------------	----	---------	--------------	----	-------	-----------

۱.	CULVERT CONDITION:
	GOOD X FAIR POOR POOR
2.	CULVERT CAPACITY:
	GOOD FAIR POOR _X
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING X CONCRETE FOOTING CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE INCOMPATIBLE
8.	COMMENTS: In general, this is a good culvert installation. However, if
	the arch could be replaced, it should be replaced with an installation
	that would reduce the HW/rise ratio to 1.5 during a 50 year flood event.
	This would reduce the potential of flood damage to the road due to flood
	overtopping and debris clogging.

15Fa - Culvert Inlet

15Fb - Typical Stream Channel

REF. NO. 13-A	Ri	EF.	NO.	13-A
---------------	----	-----	-----	------

DATE: 11/8/87 DATA BY: Bill Howard, James Bryant
STREAM: Meacham Creek ODF&W REP.: Jim Phelps
LOCATION: 0.2 mile north of Meacham on main railroad line just east of old
US 30 (MP 239), Umatilla County, T1S, R35E, Section 3
TYPE OF INSTALLATION: Structural Plate Pipe
DIMENSIONS: SPAN 12.8' RISE 14' DIAM.
LENGTH 120'
GRADIENT 0.013 foot/foot
SPECIAL FEATURES: Culvert appears to be depressed below the natural stream
bed. Another pipe is located at the site for flood relief. The additional
pipe is a 10 foot rise by 8.8 foot span, corrugated steel pipe with no specia
features for fish passage.
EVALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1. TYPE AND CONDITION OF SPECIES: Summer steelhead, resident trout
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
CRITICAL MODERATE X NONCRITICAL
3. EVALUATION OF INSTALLATION:
GOOD FAIR X POOR
4. COMMENTS: Adult steelhead spawn upstream from this culvert.

DEE	MO	32 4	
REF.	NU.	13-A	

<u>ev</u> alu	JATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:
1.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR POOR
5.	OUTLET, SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: Since the main culvert is depressed 2 to 3 feet below the

8. COMMENTS: Since the main culvert is depressed 2 to 3 feet below the natural stream bed, small boulders, cobbles, and gravels have been placed within the culvert barrel without significantly restricting the natural stream flow. This installation, thus, provides velocity and depth characteristics similar to the natural stream channel. In general, this is a good installation from the perspective of the highway facility and in terms of fish passage features.

13Aa - Culvert Outlet

13Ab - Typical Stream Channel

MEI # 110# 10 D	REF. NO. 13-B	
-----------------	---------------	--

DATE: 11/8	DATA BY: Bill Howard, James Bryant
STREAM: Me	acham Creek ODF&W REP.: Jim Phelps
LOCATION:	1.0 mile north of Meacham on main railroad line just east of
	old US 30 (MP 239), Umatilla County; TlN, R35E, Section 35
TYPE OF INS	TALLATION: Structural Plate Pipe
DIMENSIONS:	SPAN RISE DIAM. 15'
	LENGTH 143'
	GRADIENT 0.013 foot/foot
SPECIAL FEA	ATURES: Culvert appears to be depressed below the natural stream
bed. Anoth	ner pipe is located at the site for flood relief. The additional
pipe is a l	O foot diameter, corrugated steel pipe with no special features for
fish passag	ge.
EVALUATION	OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Summer steelhead, resident trout
_	
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
(CRITICAL MODERATE X NONCRITICAL
3. i	EVALUATION OF INSTALLATION:
(GOOD FAIR X POOR
4.	COMMENTS: We are not aware of any passage problems at this location.
_	
_	

REF.	NO.	13 - B	

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

۱.	CULVERT CONDITION:
	GOOD X FAIR POOR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: Since the main culvert is depressed be 2 to 3 feet below the
	natural stream bed; small boulders, cobbles, and gravels have been placed
	within the culvert barrel without significantly restricting the natural
	stream flow. This installation, thus, provides velocity and depth
	characteristics similar to the natural stream channel. In general, this
	is a good installation from the perspective of the highway facility and
	in terms of fish passage features.

13Ba - Culvert Inlet

13Bb - Typical Channel Section

REF. NO. 13-C	
---------------	--

DATE: 10/8/87	DATA BY: Bill Howard, James Bryant
STREAM: Meacham Creek	ODF&W REP.: Jim Phelps
LOCATION: 1.1 miles north of	Meacham on main railroad line just east of old
US 30 (MP 239), Um	natilla County; TlN, R35E, Section 35
TYPE OF INSTALLATION: <u>Struct</u>	tural Plate Pipe-Oval
DIMENSIONS: SPAN 14'	RISE 15' DIAM.
LENGTH 135	5' <u> </u>
GRADIENT 0.0	D2O foot/foot
SPECIAL FEATURES: Culvert ap	opears to be depressed below the natural stream
	d at the site for flood relief. The additional
	corrugated steel pipe with no special features for
fish passage.	
EVALUATION OF PASSAGE FACILITY	TIES BY ODF&W PERSONNEL:
1. TYPE AND CONDITION	OF SPECIES: Summer steelhead, resident rainbow
trout	<u> </u>
2. IMPORTANCE OF INSTA	ALLATION TO SUBJECT SPECIES:
	DDERATE X NONCRITICAL
3. EVALUATION OF INSTA	
GOOD FAIR _	
	re of any passage problems.
1. OOTHER 13. HOE GAR	re or any passage problems.
-	
	· · · · · · · · · · · · · · · · · · ·
-	<u> </u>

1.00

REF.	NO.	13-C	

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

١.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL _X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: Since the main culvert is depressed 2 to 3 feet below the
	natural stream bed; small boulders, cobbles, and gravels have been placed
	within the culvert barrel without significantly restricting the natural
	stream flow. This installation, thus, provides velocity and depth
	characteristics similar to the natural stream channel. In general, this
	is a good installation from the perspective of the highway facility and
	in terms of fish passage features.

13Ca - Culvert Barrel

13Cb - Typical Stream Channel

R	EF		NO.	1	3-D
---	----	--	-----	---	-----

DATE: 11/7/87 DATA BY: Bill Howard, James Bryant
STREAM: Meacham Creek ODF&W REP.: Jim Phelps
LOCATION: 1.4 miles north of Meacham on main railroad line just east of old
US 30 (MP 239), Umatilla County, TIN, R35E, Section 35
TYPE OF INSTALLATION: Structural Plate Pipe-Oval
DIMENSIONS: SPAN 20' RISE 20' DIAM.
LENGTH 160'
GRADIENT 0.014 foot/foot
SPECIAL FEATURES: Culvert appears to be depressed below the natural stream
bed. The culvert is connected to a 25 foot long, single span bridge.
EVALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1. TYPE AND CONDITION OF SPECIES: Summer steelhead, resident rainbow
trout
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
CRITICAL MODERATE X NONCRITICAL
3. EVALUATION OF INSTALLATION:
GOOD X FAIR POOR
4. COMMENTS:

REF. NO.	13-D
----------	------

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

ì.	CULVERT CONDITION:
	GOOD X FAIR POOR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: Since the culvert is depressed 3 to 5 feet below the natural
	stream bed, small boulders cobbles, and gravels have been placed within
	the culvert barrel without significantly constricting the natural stream
	flow. This installation, thus, provides velocity and depth
	characteristics similar to the natural stream channel. In general, this
	is a good installation from the perspective of the highway facility and
	in terms of the fish passage features.

13Da - Culvert Barrel

13Db - Typical Stream Channel

	REF.	NO.	13-E	
--	------	-----	------	--

ATE: 11/6/87 DATA BY: Bill Howard, James Bryant
TREAM: Sheep Creek ODF&W REP.: Jim Phelps
OCATION: 1.5 miles north of Meacham on main railroad lone just east of old
US 30 (MP 239), Umatilla County, TlN, R35E, Section 35
YPE OF INSTALLATION: Concrete Underpass and Corrugated Metal Pipe
IMENSIONS: SPAN RISE DIAM. 7'
LENGTH 124'
GRADIENT 0.053 foot/foot
PECIAL FEATURES: None. 8.0 foot span by 8.5 foot rise. Concrete underpass
connects to a 7 foot diameter corrugated metal pipe.
VALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1. TYPE AND CONDITION OF SPECIES: Probable summer steelhead, resident
rainbow trout
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
CRITICAL MODERATE X NONCRITICAL
3. EVALUATION OF INSTALLATION:
GOOD FAIR POOR X
4. COMMENTS: Gradient between culvert and Meacham Creek is steep and
rocky due to railroad construction.

SHEET 2 OF 3

REF. NO. 13-E

EVALUATION ()F	CULVERT	INSTALLATION	ΒY	WFLHD	PERSONNEL:
--------------	----	---------	--------------	----	-------	------------

1.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX_
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL X CONCRETE NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE INCOMPATIBLEX
•	COMMENTO TO THE PROPERTY OF TH
8.	COMMENTS: If passage were required at this site, a culvert with rise a
	and span comparable to the existing facility could be easily installed
	with a depressed invert. The depressed invert could be covered with
	small boulders and natural stream bed materials. This type of facility
	would significantly reduce culvert velocities and provide flow
	characteristics similar to the natural stream channel.

13Ea - Culvert Outlet

13Eb - Typical Stream Channel

REF. NO. 12-A

DATE: <u>11/</u> 1	2/87 DATA BY: Bill Howard, James Bryant
STREAM: _Ca	anyon Creek ODF&W REP.: Errol Claire
LOCATION:	Canyon Creek near Wickiup Campground, Grant County; T16S, R32E,
	Section 2
TYPE OF IN	STALLATION: Structural Plate Pipe-Arch
DIMENSIONS	: SPAN 12.6' RISE 8.1' DIAM.
	LENGTH
	GRADIENT 0.020 foot/foot
SPECIAL FE	ATURES: None.
EVALUATION	OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Rainbow/steelhead/chinook, adults
<u>.</u>	and juveniles
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
•	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
I	GOOD FAIR X POOR
4.	COMMENTS: Grade too high - pipe not set deep enough - necessitates
:	a rock weir downstream to provide better passage.
_	
_	

SHEET 2 OF 3

REF. NO. 12-A

EVALUATION	0F	CULVERT	INSTALLATION	ΒY	WFLHD	PERSONNEL:

1.	CULVERT CONDITION:
	GOOD X FAIR POOR POOR
2.	CULVERT CAPACITY:
	GOOD FAIR X POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR POOR
5.	OUTLET SCOUR:
	SEVERE X MODERATE NEGLIGIBLE
6.	CULVERT STREAM SURFACE:
	METAL X CONCRETE NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE INCOMPATIBLE _X
8.	COMMENTS: If the culvert were to be replaced in the future, the culvert
	should be oversized and installed with natural stream bed materials such
	as gravels and small boulders. This type of facility would significantly
	reduce culvert velocities and provide flow characteristics similar to the
	natural stream channel.

REF. NO. 12-A

12Aa - Culvert Outlet

12Ab - Typical Stream Channel

REF.	NO.	12 - B	
------	-----	---------------	--

REF. NO.	12-B
----------	------

	VALUATION	0F	CULVERT	INSTALLATION	ΒY	WFLHD	PERSONNEL:
--	-----------	----	---------	--------------	----	-------	------------

۱.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSED X
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: Since the culvert is depressed 2 to 3 feet below the natural
	stream bed, small boulders, cobbles, and gravels have been placed within
	the culvert barrel without significantly restricting the natural stream
	flow. This installation, thus, provides velocity and depth
	characteristics similar to the natural stream channel. In general, this
	is a good installation from the perspective of the highway facility and
	in terms of fish passage features.

12Ba - Culvert Inlet

12Bb - Typical Stream Channel

REF. NO.	12-C
----------	------

DATE: <u>11</u>	/12/87 DATA BY: Bill Howard, James Bryant	
STREAM:	Canyon Creek ODF&W REP.: Errol Claire	
LOCATION:	Canyon Creek at junction of US Roads 15 and 1520, Grant County;	
	T16S, R32E, Section 1	
TYPE OF I	NSTALLATION: Structural Plate Pipe	
DIMENSIONS: SPAN RISE DIAM. 10'		
	LENGTH 113'	
	GRADIENT 0.0177 foot/foot	
SPECIAL F	EATURES: Culvert appears to be depressed below the natural stream	
bed.		
	ON OF PASSAGE FACILITIES BY ODF&W PERSONNEL:	
1.	TYPE AND CONDITION OF SPECIES: Rainbow/steelhead/cutthroat/chinook	
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:		
	CRITICAL X MODERATE NONCRITICAL	
3.	EVALUATION OF INSTALLATION:	
	GOOD X FAIR POOR	
4.	COMMENTS:	

EVALUATION OF CULVERT INSTALLATION BY WFLHD PER	VALUATION O	CULVERT	INSTALLATION	BY	WFLHD	PERSONNEL:
---	-------------	---------	--------------	----	-------	------------

1.	CULVERT CONDITION:
	GOOD FAIR _X POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: Since the culvert is depressed approximately 1 foot below the
	natural stream bed, small boulders, cobbles, and gravels have been
	periodically placed within the culvert barrel without significantly
	restricting the natural stream flow. This installation, thus, provides
	velocity and depth characteristics similar to the natural stream
	channel. In general, this is a good installation from the perspective of
	the highway facility and in terms of fish passage characteristics.

12Ca - Culvert Barrel

12Cb - Typical Stream Channel

REF. NO. 12-	-D
--------------	----

DATE: 11/	/17/87 DATA BY: Bill Howard, James Bryant
STREAM: E	Ruby Creek ODF&W REP.: Errol Claire
LOCATION:	Middle Fork John Day River Road, Grant County; T115, R34E, Section 6
TYPE OF IN	NSTALLATION: Corrugated Metal Arch
DIMENSIONS	S: SPAN 8' RISE 4' DIAM.
	LENGTH60'
	GRADIENT 0.030 foot/foot
SPECIAL F	EATURES: Open bottom arch
EVALUATIO	N OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Rainbow/steelhead/chinook,
	adults and juveniles
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD X FAIR POOR
4.	COMMENTS:
	· · · · · · · · · · · · · · · · · · ·

REF.	NO.	12-D	
L/ La 1	110.	12-0	

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

1.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD FAIR X POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING X CONCRETE FOOTING CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR X POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLE X
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL _X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: In general, this is a good culvert installation. However, a
	pipe-arch could have been installed at this site. With a pipe arch,
	foundation does not have to be set on bedrock or below the scour depth
	for large flood events.

12Da - Culvert Outlet

12Db - Typical Stream Channel

REF. NO.	12-E
----------	------

SHEET 2 OF 3

REF. NO. 12-E

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSO	EVALUATION	OF CULVERT	INSTALLATION	BY	WELHD	PERSONNEL
---	------------	------------	--------------	----	-------	-----------

١.	CULVERT CONDITION:
•	
	GOOD FAIR POOR _X
2.	CULVERT CAPACITY:
	GOOD FAIR X POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING X CONCRETE FOOTING CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR POOR _X
5.	OUTLET SCOUR:
	SEVERE MODERATE X NEGLIGIBLE
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL _X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
0	COMPAGNITO TO THE PART OF THE
8.	COMMENTS: The existing arch should be replaced with an oversized struc-
	tural plate pipe. The pipe invert could be set below the existing stream
	gradient and backfilled with natural stream bed material. This
	alternative would provide the same positive fish passage characteristics
	as the existing facility while eliminating the possibility of scour
	failure that currently exists at the site. Also, boulder clusters or log
	weirs may be required to reduce culvert velocities at the pipe outlet.

12Ea - Culvert Barrel

12Eb - Typical Stream Channel

REF. NO.	12-F
----------	------

DATE: <u>11</u>	/18/87 DATA BY: Bill Howard, James Bryant
STREAM:	Indian Creek ODF&W REP.: Errol Claire
LOCATION:	Middle Fork John Day Road, Grant County; T9S, R32E, Section 7
TYPE OF I	INSTALLATION: Structural Plate Arch
DIMENSION	NS: SPAN 12' RISE 7' DIAM.
	LENGTH
	GRADIENT 0.034 foot/foot
SPECIAL F	FEATURES: Open bottom arch
EVALUATIO	ON OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Rainbow/steelhead/chinook, adult and
	juveniles
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD X FAIR POOR
4.	COMMENTS:
•	

REF.	NO.	12-F	
(\ _1 •		16.	

EVALUATION	0F	CULVERT	INSTALLATION	ВΥ	WFLHD	PERSONNEL:
------------	----	---------	--------------	----	-------	------------

1.	CULVERT CONDITION:
	GOOD FAIR POORX
2.	CULVERT CAPACITY:
	GOOD FAIR X POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING X CONCRETE FOOTING CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR POORX
5.	OUTLET SCOUR:
	SEVERE MODERATEX NEGLIGIBLE
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
•	COMMENTS. The eviction such should be wenleded with an every
8.	
	structural plate pipe. The pipe invert should be set below the existing
	stream bed gradient and backfilled with natural stream bed material.
	This alternative would provide the same positive fish passage
	characteristics as the existing facility while eliminating the
	possibility of scour failure that currently exists at the site. Also,
	boulder clusters or log weirs may be required to reduce culvert
	velocities at the pipe outlet.

12Fa - Culvert Outlet

12Fb - Typical Stream Channel

RE.	F.	NO.	12-	G
-----	----	-----	-----	---

_
_
_
_
_
_
_

REF.	NO.	12-G	

EVALUATION (0F	CULVERT	INSTALLATION	ВΥ	WFLHD	PERSONNEL:
--------------	----	---------	--------------	----	-------	------------

1.	CULVERT CONDITION:
	GOOD FAIR X POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING _X _ CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR POOR _X
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL _X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: If the existing arch footings are not set on bedrock, then the
	arch should be replaced with an oversized structural plate pipe or
	pipe-arch. The pipe invert should be set below the existing stream bed
	gradient and backfilled with natural stream bed material. This
	alternative would provide the same positive fish passage characteristics
	as the existing facility while eliminating the possibility of scour
	failure that currently exists at the site.

12Ga - Culvert Barrel

12Gb - Typical Stream Channel

REF.	NO.	12-H
		, -

DATE: <u>11</u>	/18/87 DATA BY: Bill Howard, James Bryant
STREAM:	Granite Creek ODF&W REP.: Errol Claire
LOCATION:	US 395, Grant County; T8S, R31E, Section 17
TYPE OF I	NSTALLATION: Structural Plate Arch
DIMENSION	S: SPAN 13.1' RISE 6.8 feet" DIAM.
	LENGTH 72'
	GRADIENT 0.015 foot/foot
SPECIAL F	FEATURES: Open bottom arch
EVALUATIO	ON OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Rainbow/steelhead/chinook, adults and
	juveniles
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD X FAIR POOR POOR
4.	COMMENTS:

SHEET 2 OF 3
REF. NO. 12-H

EVALUATION	0F	CULVERT	INSTALLATION	ВΥ	WFLHD	PERSONNEL:
------------	----	---------	--------------	----	-------	------------

١.	CULVERT CONDITION:
	GOOD FAIR X POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTINGX CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR POOR _X
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL _X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: The arch should be replaced with an oversized structural plate
٥.	
	pipe or pipe-arch. The pipe invert should be set below the existing
	stream bed gradient and backfilled with natural stream bed material.
	This alternative would provide the same positive fish passage
	characteristics as the existing facility while eliminating the
	possibility of scour failure that currently exists at the site.

12Ha - Culvert Barrel

12Hb - Typical Stream Channel

REF. NO.	12-I
----------	------

DATE: 11/19/87 DATA 9	Y: Bill Howard, James E	ryant
STREAM: Granite Creek	ODF&W REP.: Errol Cla	ire
LOCATION: US 395, Grant County; T8S	R31E, Section 30	
TYPE OF INSTALLATION: Structural Plan	te Arch	
DIMENSIONS: SPAN 13.2'		
LENGTH111'		
GRADIENT 0.022 foot/	oot	
SPECIAL FEATURES: Open bottom arch		
EVALUATION OF PASSAGE FACILITIES BY	DF&W PERSONNEL:	
1. TYPE AND CONDITION OF SPEC	ES: Rainbow/steelhead/o	chinook, adults and
juveniles		
2. IMPORTANCE OF INSTALLATION	TO SUBJECT SPECIES:	
CRITICAL X MODERATE	NONCRITICAL	_
 EVALUATION OF INSTALLATION 		
GOOD X FAIR	900R	
4. COMMENTS:		· · · · · · · · · · · · · · · · · · ·

SHEET 2 OF 3

REF.	NO.	12-I
		· -

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

١.	CULVERT CONDITION:
	GOOD FAIR POOR _X
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTINGX CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR POOR _X
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL _X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: The arch should be replaced with an oversized structural plate_
٠,	pipe or pipe-arch. The pipe invert should be set below the existing
	stream bed gradient and backfilled with natural stream bed material. This
	alternative would provide the same positive fish passage characteristics
	as the existing facility while eliminating the possibility of scour
	failure that currently exists at the site.

REF. NO. 12-I

12Ia - Culvert Barrel

12Ib - Typical Stream Channel

REF.	NO.	12-J
.,		

DATE: 11/	/22/87 DATA BY: Bill Howard, James Bryant
STREAM: S	Sunflower Creek ODF&W REP.: Errol Claire
LOCATION:	15 miles east of Paulina, Grant County; T16S, R27E, Section 19
TYPE OF IN	ISTALLATION: Structural Plate Pipe-Arch
DIMENSIONS	S: SPAN 17.3' RISE 10' DIAM.
	LENGTH 87'
	GRADIENT 0.037 foot/foot
SPECIAL FE	EATURES: Baffles installed on 12 foot spacings
EVALUATION	OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Wild Rainbow (Redbands), adults and
	juveniles
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOODX FAIR POOR
4.	COMMENTS: Must also accommodate steelhead once South Fork Falls is
	laddered. Presently being reviewed by BPA.

SHEET 2 OF 3

REF. NO. 12-J

EVALUATION	0F	CULVERT	INSTALLATION	ΒY	WFLHD	PERSONNEL:
------------	----	---------	--------------	----	-------	------------

1.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
	COMMENTO. The best of the second decaded to the best of the best o
8.	COMMENTS: In general, this is a good installation. The baffles aid in the
	retention of boulder, gravel, and cobble deposits within the barrel. The
	culvert barrel area is sufficient to pass wooded debris while the baffles
	do not appear to collect floating debris. Finally, the baffles appear to
	be the appropriate height for permitting fish passage during low flow
	neriods.

12Ja - Culvert Outlet

12Jb - Typical Stream Channel

REF.	NO.	11-A	
• • •			

DATE: <u>11/</u>	23/87 DATA BY: Bill Howard, James Bryant
STREAM: M	arks Creek ODF&W REP.: Ed Schwartz
LOCATION:	25 miles east of Prineville on US 26, Wheeler County; T13S, R19E,
	Section 17
TYPE OF IN	STALLATION: Structural Plate Arch
DIMENSIONS	: SPAN 18' RISE 8.8' DIAM.
	LENGTH 53'
	GRADIENT 0.0027 foot/foot
SPECIAL FE	ATURES: Open bottom arch. Log weirs placed upstream and down-
stream fro	m culvert.
EVALUATION	OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Fair population of rainbow trout in
	some years when steamflows are adequate.
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL MODERATE X NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD X FAIR POOR
4.	COMMENTS: Conditions under this culvert resemble the natural state
	very closely.

SHEET 2 OF 3

REF. NO. 11-A

EVALUATION OF	CULVERT	INSTALLATION	ВΥ	WFLHD	PERSONNEL:

١.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING X CONCRETE FOOTING CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR X POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: The natural steam bed surface within the culvert barrel pro-
	vides depth and velocity characteristics similar to the natural stream
	channel. Thus, the fish passager characteristics are good at this site.
	Overall, this is a good culvert installation.
	· · · · · · · · · · · · · · · · · · ·

11Aa - Culvert Outlet

11Ab - Typical Stream Channel

D	EF.	NΛ	10-A	
К	E -	NO.	10-7	

DATE: 11	/23/87 DATA BY: Bill Howard, James Bryant
STREAM:	Brown's Creek ODF&W REP.: Ted Fies
	Tributary to Wickiup Reservoir, Deschutes County; T21S, R8E,
	Section 29
TYPE OF I	NSTALLATION: Structural Plate Pipe-Arch
DIMENSION	S: SPAN 12.6' RISE 9.4' DIAM.
	LENGTH _76'
	GRADIENT 0.005 foot/foot
SPECIAL F	EATURES: Culvert appears to be depressed below the natural stream
bed.	
EVALUATIO	N OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Spawning brown trout, spawnin kokanee
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD X FAIR POOR
4.	COMMENTS: The Brown's Creek arch culvert has worked extremely well.
	It poses absolutely no problems for adult fish or juvenile fish
	moving up or downstream.

SHEET 2 OF 3

REF. NO. 10-A

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

1.	CULVERT CONDITION:
	GOOD X FAIR POOR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSED X
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL _X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
0	COMMENTS. Although some of the size invest metal is evered the flat
٥.	COMMENTS: Although some of the pipe invert metal is exposed, the flat
	gradient and the sporadic deposition of natural stream bed materials
	within the culvert barrel provide depth and velocity characteristics
	similar to the natural stream channel. Thus, the fish passage
	characteristics are good at this site. Overall, this is a good culvert
	installation.

10Aa - Culvert Inlet

10Ab - Typical Stream Channel

DEE	NΩ	2_1
REF.	NU.	4-H

DATE: 11/27/87 DATA BY: Bill Howard, James Bryant
STREAM: Lowe Creek ODF&W REP.: Jay Massey
LOCATION: FS Road 4671, Clackamas County; T7S, R73, Section 24
TYPE OF INSTALLATION: Structural Plate Arch
DIMENSIONS: SPAN 21.7' RISE 11.7' DIAM.
LENGTH 72'
GRADIENT 0.05 foot/foot
SPECIAL FEATURES: Open bottom arch with boulders placed inside the barrel.
EVALUATION OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1. TYPE AND CONDITION OF SPECIES: Small runs of Coho salmon and winter
steelhead. Also, resident trout in the system.
2. IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
CRITICAL MODERATE NONCRITICAL
*Critical for salmon and steelhead; important for resident trout.
3. EVALUATION OF INSTALLATION:
GOOD X FAIR POOR
4. COMMENTS: Excellent open bottom arch installation.

SHEET 2 OF 3

REF. NO. _2-A_____

	EVALUATION	0F	CULVERT	INSTALLATION	ΒY	WFLHD	PERSONNEL:
--	------------	----	---------	--------------	----	-------	------------

1.	CULVERT CONDITION:
	GOOD FAIR _X POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING _X _ CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR POOR X
5.	OUTLET SCOUR:
	SEVERE MODERATEX NEGLIGIBLE
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: In general, the above culvert is a good highway and fish pass-
	age installation. However, open bottom arches with shallow foundations
	are susceptible to scour if not placed on nonerodible materials (i.e.,
	bedrock). If this foundation requirement cannot be met, then a pipe
	culvert with its metal invert depressed below the natural stream bed
	gradient should be installed at these types of locations.

2Aa - Culvert Inlet

2Ab - Typical Stream Channel

REF.	NO.	2-B	

DATE: 11/28/	DATA BY: Bill Howard, James Bryant
STREAM: Poop	Creek ODF&W REP.: Jay Massey
LOCATION: On	FS Road 42, east of Camp Creek Road, Clackamas County; T7S, R8E,
Se	ction 9
TYPE OF INSTA	LLATION: Corrugated Metal Pipe
DIMENSIONS:	SPAN RISE DIAM. 4'
	LENGTH 50'
	GRADIENT 0.059 foot/foot
SPECIAL FEATU	RES: Man-made pools were built at inlet and outlet with log
barriers.	
EVALUATION OF	PASSAGE FACILITIES BY ODF&W PERSONNEL:
1. TYP	E AND CONDITION OF SPECIES: We don't have good inventory infor-
mat	ion on Poop Creek. May have a few Coho salmon and winter steel-
hea	d in the stream. Resident trout are in the system.
2. IMP	ORTANCE OF INSTALLATION TO SUBJECT SPECIES:
CRI	TICAL X* MODERATE NONCRITICAL
	tical for salmon and steelhead; important for resident trout.
3. EVA	LUATION OF INSTALLATION:
G00	D FAIR X POOR
	MENTS: Passage okay. Gradient a little steep for good fish
pas	sage.

SHEET 2	2 OF 3	
REF. NO	0. <u>2-B</u>	

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

١.	CULVERT CONDITION:
	GOOD X FAIR POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSED _X
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLE
6.	CULVERT STREAM SURFACE:
	METAL X CONCRETE NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:

COMPATIBLE INCOMPATIBLE X

8. COMMENTS: The pipe metal invert and the steep pipe slope (i.e., 0.059)

foot/foot) induce stream velocities through the culvert facility that are 2 to 3 times greater than the stream velocities encountered in the natural channel cross section. Also scour was observed at the pipe outlet due to these high velocities. Thus, the pipe culvert may inhibit passage of fisheries during high runoff periods. If the culvert were to be replaced in the future, the culvert would require oversizing for the placement of baffles and/or natural stream bed materials such as gravels and small boulders to sufficiently reduce stream velocities at the culvert facility. Furthermore, the short culvert length of 50 feet may permit passage of fish under flow conditions that otherwise would not occur in a longer culvert length. Thus, if the pipe culvert is lengthened during the replacement process, the stream velocities within the culvert barrel may require further reduction to compensate for the additional length the fishery must traverse at the culvert site.

2Ba - Culvert Inlet

2Bb - Typical Stream Channel

REF.	NO.	3-A	
VF.	110.	J-A	

DATE: 12	DATA BY: Bill Howard, James Bryant
STREAM: P	Pine Creek ODF&W REP.: John Haxton
LOCATION:	18 miles south of Molalla, Clackamas County; T6S, R3E, Section 27
TYPE OF IN	NSTALLATION: Corrugated Metal Pipe
DIMENSIONS	S: SPAN RISE DIAM7.5'
	LENGTH46'
	GRADIENT 0.026 foot/foot
SPECIAL FE	EATURES: An additional 36 inch diameter pipe has been installed for
flood reli	ief. The flood relief pipe does not have any special features for
fish passa	age.
EVALUATION	N OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Resident cutthroat trout
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL MODERATE NONCRITICAL _X
3.	EVALUATION OF INSTALLATION:
	GOOD X FAIR POOR
4.	COMMENTS: Pine Creek was surveyed this year. This structure was
	surveyed August 4th. No log weirs were observed.

REF. NO. 3-A

EVAL	UATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:
١.	CULVERT CONDITION:
	GOOD FAIR X POOR
2.	CULVERT CAPACITY:
	GOOD FAIR X POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING CLOSEDX
4.	CONDITION OF FOUNDATION:
	GOOD X FAIR POOR POOR
5.	OUTLET SCOUR:
	SEVERE X MODERATE NEGLIGIBLE
6.	CULVERT STREAM SURFACE:
	METAL X CONCRETE NATURAL
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X
8.	COMMENTS: The metal invert and steep gradient create barrel velocities
	that are nearly double the velocities in the natural stream channel.
	Also, a 2 to 3 foot deep scour hole that may impede fish passage at lower
	flows. However, the short pipe length and a natural beaver pond below
	the pipe may permit the passage of fish through the installation.
	In general, this is not a good installation for the passage of fish. If
	the pipe were replaced and/or lengthened, fish passage would be difficult
	under the current circumstances. Also, there is no guarantee that the

beaver pond will remain in place.

REF. NO. 3-A

3Aa - Culvert Outlet

3Ab - Typical Stream Channel

REF.	NO.	7-A	

DATE: <u>12</u> /	/8/87 DATA BY: Bill Howard, James Bryant
STREAM: L	Haight Creek ODF&W REP.: Jerry MacLeod
LOCATION:	Upper Siuslaw River Tributary, Lane County; T19S, R7W, Section 34
TYPE OF I	NSTALLATION: Structural Plate Arch
DIMENSIONS	S: SPAN 18.2' RISE 8.9' DIAM.
	LENGTH 69'
	GRADIENT 0.0015 foot/foot
SPECIAL FI	EATURES: Open bottom arch
EVALUATIO	N OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Anadromous and resident salmonids.
	Including chinook and coho salmon and cutthroat and steelhead trout.
	Would not affect condition of species.
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD X FAIR POOR POOR
4.	COMMENTS: Access to stream good at most flows, except extreme low
summ	er time. Metal of culvert beginning to corrode near waterline, but
conc	rete sill shows no sign of wear. No buildup of gravel or other
mate	rial. Soft sandstone bedrock bottom. Bridge was offset from normal
stre	am channel by 15 feet on upstream end. Bridge should have been
plac	ed more directly in-line with stream flow. Some erosion noted at
this	point, probably due to creation of back eddy.

SHEET 2 OF 3

REF. NO. _7-A

EVALUATION	0F	CULVERT	INSTALLATION	ΒY	WFLHD	PERSONNEL:
------------	----	---------	--------------	----	-------	------------

1.	CULVERT CONDITION:
	GOOD FAIR X POOR
2.	CULVERT CAPACITY:
	GOOD X FAIR POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING X CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR X POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURAL _X
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: This open bottom arch is a good installation overall. However
	the concrete footings appear to be located on sandstone. Thus, scour a
	the foundations may be a problem.

REF. NO. 7-A

7Aa - Culvert Barrel

7Ab - Typical Stream Channel

REF.	NO.	7-B	

DATE: 12/	/8/87 DATA BY: Bill Howard, James Bryant
STREAM: E	Eames Creek ODF&W REP.: Jerry MacLeod
	Wolf Creek Tributary, Lane County; T19S, R6W, Section 7
TYPE OF IN	NSTALLATION: Structural Plate Arch
DIMENSIONS	S: SPAN 13.8' RISE 6.9' DIAM.
	LENGTH 56'
	GRADIENT 0.002 foot/foot
SPECIAL F	EATURES: Open bottom arch
EVALUATIO	N OF PASSAGE FACILITIES BY ODF&W PERSONNEL:
1.	TYPE AND CONDITION OF SPECIES: Anadromous and resident salmonids.
	Including chinook and coho salmon and cutthroat and steelhead trout.
	Would not affect condition of species.
2.	IMPORTANCE OF INSTALLATION TO SUBJECT SPECIES:
	CRITICAL X MODERATE NONCRITICAL
3.	EVALUATION OF INSTALLATION:
	GOOD X FAIR POOR
	ACMIEUTO A
4.	
	flows. No build-up of gravel or other material. Soft sandstone
	bedrock bottom.
	Bridge not constructed directly in-line with stream, but off 20 to
	30 degrees to left as you look downstream. Rip-rap material
	prevents any damage to stream banks.

EVALUATION OF CULVERT INSTALLATION BY WFLHD PERSONNEL:

١.	CULVERT CONDITION:
	GOOD FAIR X POOR
2.	CULVERT CAPACITY:
	GOOD FAIR X POOR
3.	TYPE OF CULVERT FOUNDATION:
	METAL FOOTING CONCRETE FOOTING X CLOSED
4.	CONDITION OF FOUNDATION:
	GOOD FAIR X POOR
5.	OUTLET SCOUR:
	SEVERE MODERATE NEGLIGIBLEX
6.	CULVERT STREAM SURFACE:
	METAL CONCRETE NATURALX
7.	CULVERT HYDRAULICS V. NATURAL STREAM HYDRAULICS:
	COMPATIBLE X INCOMPATIBLE
8.	COMMENTS: This open bottom arch is a good installation overall. However,
	the concrete footings appear to be located on sandstone. Thus, scour at
	the foundations may be a problem.

7Ba - Culvert Outlet

7Bb - Typical Stream Channel

APPENDIX C

STREAM HYDROLOGY

	LIST OF SYMBOLS AND DIMENSIONS
Q2	Two year flood, in cubic feet per second (cfs)
Q5	Five year flood, in cubic feet per second (cfs)
Q10	Ten year flood, in cubic feet per second (cfs)
Q25	Twenty-five year flood, in cubic feet per second (cfs)
Q50	Fifty year flood, in cubic feet per second (cfs)
Q1 00	One hundred year flood, in cubic feet per second (cfs)
P	Mean annual precipitation, in inches
F	Percent of basin forest
I	Precipitation intensity, in inches
ST	Area of lakes and ponds, in percent
TI	Mean basin January minimum temperature, in degrees
L	Length of channel, in miles

SUMMARY OF HYDROLOGIC COMPUTATIONS

EASTERN OREGON NORTHEAST REGION 2

*****	*****	*****	*******	*****	******	*****	*****	*****	*****	******	*****
		Α	Р	F	Q2	Q5	Q10	Q25	Q50	Q100	
LAT.	LONG.	<u> 5Q. MI.</u>	INCHES	PERCENT	<u>CFS</u>	<u>CFS</u>	<u>CFS</u>	CFS	<u>CFS</u>	CFS	
44-10.0	119-35.0	22.60	20.00	50.00	133	231	303	395	486	565	
44-53.0	119-01.0	11.40	20.00	50.00	76	134	178	233	289	336	
44-51.5	119-02.0	14.50	20.00	50.00	93	162	214	281	347	403	
44-38.0	118-40.0	5.50	20.00	50.00	42	76	101	133	166	193	
44-47.5	118-55.0	23.50	25.00	50.00	186	303	387	490	592	677	
44-46.0	118-52.5	30.70	25.00	50.00	232	375	477	602	725	830	
44-13.5	118-51.0	27.80	25.00	50.00	214	346	441	558	673	770	
44-13.3	118-50.5	11.90	25.00	50.00	107	177	228	290	353	404	
44-13.0	118-50.0	11.50	25.00	50.00	104	173	222	283	344	394	
45-47.0	117-56.0	10.80	30.00	50.00	126	200	251	313	376	425	
45-47.0	117-53.0	18,20	30.00	50.00	194	302	378	468	559	631	
45-42.0	116-55.5	2.00	15.00	70.00	11	22	31	43	55	65	
45-44.0	116-54.5	4.80	15.00	70.00	23	45	52	84	. 107	126	
45-33.0	116-50.5	48.20	15.00	70.00	153	278	373	497	619	729	
45-40.0	116-57.0	25.50	15.00	70.00	91	168	227	304	381	449	
45-42.5	117-09.5	55.80	12.50	70.00	135	256	351	478	603	719	
45-11.0	116-52.5	18.80	25.00	70.00	142	230	292	368	444	504	
45-46.5	116-55.5	6.10	15.00	70.00	28	54	74	101	129	151	
45-46.0	116-59.5	10.70	15.00	70.00	45	85	115	156	197	232	
45-45.0	117-01.0	5.30	15.00	70.00	25	49	67	91	116	136	
45-42.5	117-09.5	25.50	12.50	70.00	71	138	191	261	333	397	
	LAT. 44-10.0 44-53.0 44-51.5 44-38.0 44-47.5 44-46.0 44-13.5 44-13.3 44-13.0 45-47.0 45-47.0 45-42.0 45-42.0 45-42.0 45-46.0 45-46.5 45-46.0 45-46.5 45-46.0	LAT. LONG. 44-10.0 119-35.0 44-53.0 119-01.0 44-51.5 119-02.0 44-38.0 118-40.0 44-47.5 118-55.0 44-46.0 118-52.5 44-13.5 118-51.0 44-13.3 118-50.5 44-13.0 118-50.0 45-47.0 117-56.0 45-47.0 117-55.5 45-44.0 116-55.5 45-40.0 116-57.0 45-42.5 117-09.5 45-46.5 116-55.5 45-46.0 116-59.5 45-45.0 117-01.0	A LAT. LONG. SQ. MI. 44-10.0 119-35.0 22.60 44-53.0 119-01.0 11.40 44-51.5 119-02.0 14.50 44-38.0 118-40.0 5.50 44-47.5 118-55.0 23.50 44-46.0 118-52.5 30.70 44-13.5 118-51.0 27.80 44-13.3 118-50.5 11.90 44-13.0 118-50.0 11.50 45-47.0 117-56.0 10.80 45-47.0 117-55.0 18.20 45-42.0 116-55.5 2.00 45-44.0 116-54.5 4.80 45-33.0 116-50.5 48.20 45-40.0 116-57.0 25.50 45-42.5 117-09.5 55.80 45-11.0 116-52.5 18.80 45-46.0 116-59.5 10.70 45-45.0 117-01.0 5.30	LAT. LONG. SQ. MI. INCHES 44-10.0 119-35.0 22.60 20.00 44-53.0 119-01.0 11.40 20.00 44-51.5 119-02.0 14.50 20.00 44-38.0 118-40.0 5.50 20.00 44-38.0 118-55.0 23.50 25.00 44-47.5 118-55.0 23.50 25.00 44-46.0 118-52.5 30.70 25.00 44-13.5 118-51.0 27.80 25.00 44-13.3 118-50.5 11.90 25.00 44-13.0 118-50.0 11.50 25.00 45-47.0 117-56.0 10.80 30.00 45-47.0 117-53.0 18.20 30.00 45-42.0 116-55.5 2.00 15.00 45-43.0 116-50.5 48.20 15.00 45-40.0 116-57.0 25.50 15.00 45-42.5 117-09.5 55.80 12.50 45-46.5 116-52.5 18.80	LAT. LONG. SQ. MI. INCHES PERCENT 44-10.0 119-35.0 22.60 20.00 50.00 44-53.0 119-01.0 11.40 20.00 50.00 44-51.5 119-02.0 14.50 20.00 50.00 44-38.0 118-40.0 5.50 20.00 50.00 44-47.5 118-55.0 23.50 25.00 50.00 44-46.0 118-55.0 27.80 25.00 50.00 44-13.5 118-51.0 27.80 25.00 50.00 44-13.3 118-50.5 11.90 25.00 50.00 44-13.0 118-50.0 11.50 25.00 50.00 45-47.0 117-56.0 10.80 30.00 50.00 45-47.0 117-53.0 18.20 30.00 50.00 45-42.0 116-55.5 2.00 15.00 70.00 45-44.0 116-54.5 4.80 15.00 70.00 45-42.5 117-09.5 55.80 12.50 </td <td>LAT. LONG. SQ. MI. INCHES PERCENT CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 44-53.0 119-01.0 11.40 20.00 50.00 76 44-51.5 119-02.0 14.50 20.00 50.00 93 44-38.0 118-40.0 5.50 20.00 50.00 42 44-47.5 118-55.0 23.50 25.00 50.00 186 44-46.0 118-52.5 30.70 25.00 50.00 232 44-13.5 118-51.0 27.80 25.00 50.00 214 44-13.3 118-50.5 11.90 25.00 50.00 107 44-13.0 118-50.0 11.50 25.00 50.00 104 45-47.0 117-56.0 10.80 30.00 50.00 126 45-42.0 116-55.5 2.00 15.00 70.00 13 45-43.0 116-50.5 48.20 15.00 70.00</td> <td>LAT. LONG. SQ. MI. INCHES PERCENT CFS CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 44-53.0 119-01.0 11.40 20.00 50.00 76 134 44-51.5 119-02.0 14.50 20.00 50.00 93 162 44-38.0 118-40.0 5.50 20.00 50.00 42 76 44-47.5 118-55.0 23.50 25.00 50.00 186 303 44-46.0 118-55.5 30.70 25.00 50.00 232 375 44-13.5 118-51.0 27.80 25.00 50.00 214 346 44-13.3 118-50.5 11.90 25.00 50.00 107 177 44-13.0 118-50.0 11.50 25.00 50.00 104 173 45-47.0 117-56.0 10.80 30.00 50.00 194 302 45-42.0 116-54.5</td> <td>LAT. LONG. SQ. MI. INCHES PERCENT CFS CFS CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 303 44-53.0 119-01.0 11.40 20.00 50.00 76 134 178 44-51.5 119-02.0 14.50 20.00 50.00 93 162 214 44-38.0 118-40.0 5.50 20.00 50.00 42 76 101 44-47.5 118-55.0 23.50 25.00 50.00 186 303 387 44-46.0 118-52.5 30.70 25.00 50.00 232 375 477 44-13.5 118-51.0 27.80 25.00 50.00 214 346 441 44-13.3 118-50.0 11.50 25.00 50.00 107 177 228 44-7.0 117-56.0 10.80 30.00 50.00 104 173 222 45-47.0<td>LAT. LONG. SQ. MI. INCHES PERCENT CFS CFS CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 303 395 44-53.0 119-01.0 11.40 20.00 50.00 76 134 178 233 44-51.5 119-02.0 14.50 20.00 50.00 93 162 214 281 44-38.0 118-40.0 5.50 20.00 50.00 42 76 101 133 44-47.5 118-55.0 23.50 25.00 50.00 186 303 387 490 44-46.0 118-52.5 30.70 25.00 50.00 232 375 477 602 44-13.3 118-50.0 27.80 25.00 50.00 107 177 228 290 44-13.0 118-50.0 11.50 25.00 50.00 104 173 222 283 45-47.0 117-56.0</td><td>LAT. LONG. SQ. MI. INCHES PERCENT CFS CFS CFS CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 303 395 486 44-53.0 119-01.0 11.40 20.00 50.00 76 134 178 233 289 44-51.5 119-02.0 14.50 20.00 50.00 93 162 214 281 347 44-38.0 118-40.0 5.50 20.00 50.00 42 76 101 133 166 44-47.5 118-55.0 23.50 25.00 50.00 186 303 387 490 592 44-46.0 118-52.5 30.70 25.00 50.00 232 375 477 602 725 44-13.3 118-50.5 11.90 25.00 50.00 107 177 228 290 353 44-13.0 118-50.0 11.50 25.00 5</td><td>LAT. LONG. SQ. MI. INCHES F PERCENT Q2 CFS Q5 CFS Q10 Q25 CFS Q50 Q100 CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 303 395 486 565 44-53.0 119-01.0 11.40 20.00 50.00 76 134 178 233 289 336 44-51.5 119-02.0 14.50 20.00 50.00 93 162 214 281 347 403 44-38.0 118-40.0 5.50 20.00 50.00 42 76 101 133 166 193 44-47.5 118-55.0 23.50 25.00 50.00 186 303 387 490 592 677 44-46.0 118-55.0 23.50 25.00 50.00 232 375 477 602 725 830 44-13.5 118-50.0 27.80 25.00 50.00 107 177 228 290</td></td>	LAT. LONG. SQ. MI. INCHES PERCENT CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 44-53.0 119-01.0 11.40 20.00 50.00 76 44-51.5 119-02.0 14.50 20.00 50.00 93 44-38.0 118-40.0 5.50 20.00 50.00 42 44-47.5 118-55.0 23.50 25.00 50.00 186 44-46.0 118-52.5 30.70 25.00 50.00 232 44-13.5 118-51.0 27.80 25.00 50.00 214 44-13.3 118-50.5 11.90 25.00 50.00 107 44-13.0 118-50.0 11.50 25.00 50.00 104 45-47.0 117-56.0 10.80 30.00 50.00 126 45-42.0 116-55.5 2.00 15.00 70.00 13 45-43.0 116-50.5 48.20 15.00 70.00	LAT. LONG. SQ. MI. INCHES PERCENT CFS CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 44-53.0 119-01.0 11.40 20.00 50.00 76 134 44-51.5 119-02.0 14.50 20.00 50.00 93 162 44-38.0 118-40.0 5.50 20.00 50.00 42 76 44-47.5 118-55.0 23.50 25.00 50.00 186 303 44-46.0 118-55.5 30.70 25.00 50.00 232 375 44-13.5 118-51.0 27.80 25.00 50.00 214 346 44-13.3 118-50.5 11.90 25.00 50.00 107 177 44-13.0 118-50.0 11.50 25.00 50.00 104 173 45-47.0 117-56.0 10.80 30.00 50.00 194 302 45-42.0 116-54.5	LAT. LONG. SQ. MI. INCHES PERCENT CFS CFS CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 303 44-53.0 119-01.0 11.40 20.00 50.00 76 134 178 44-51.5 119-02.0 14.50 20.00 50.00 93 162 214 44-38.0 118-40.0 5.50 20.00 50.00 42 76 101 44-47.5 118-55.0 23.50 25.00 50.00 186 303 387 44-46.0 118-52.5 30.70 25.00 50.00 232 375 477 44-13.5 118-51.0 27.80 25.00 50.00 214 346 441 44-13.3 118-50.0 11.50 25.00 50.00 107 177 228 44-7.0 117-56.0 10.80 30.00 50.00 104 173 222 45-47.0 <td>LAT. LONG. SQ. MI. INCHES PERCENT CFS CFS CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 303 395 44-53.0 119-01.0 11.40 20.00 50.00 76 134 178 233 44-51.5 119-02.0 14.50 20.00 50.00 93 162 214 281 44-38.0 118-40.0 5.50 20.00 50.00 42 76 101 133 44-47.5 118-55.0 23.50 25.00 50.00 186 303 387 490 44-46.0 118-52.5 30.70 25.00 50.00 232 375 477 602 44-13.3 118-50.0 27.80 25.00 50.00 107 177 228 290 44-13.0 118-50.0 11.50 25.00 50.00 104 173 222 283 45-47.0 117-56.0</td> <td>LAT. LONG. SQ. MI. INCHES PERCENT CFS CFS CFS CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 303 395 486 44-53.0 119-01.0 11.40 20.00 50.00 76 134 178 233 289 44-51.5 119-02.0 14.50 20.00 50.00 93 162 214 281 347 44-38.0 118-40.0 5.50 20.00 50.00 42 76 101 133 166 44-47.5 118-55.0 23.50 25.00 50.00 186 303 387 490 592 44-46.0 118-52.5 30.70 25.00 50.00 232 375 477 602 725 44-13.3 118-50.5 11.90 25.00 50.00 107 177 228 290 353 44-13.0 118-50.0 11.50 25.00 5</td> <td>LAT. LONG. SQ. MI. INCHES F PERCENT Q2 CFS Q5 CFS Q10 Q25 CFS Q50 Q100 CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 303 395 486 565 44-53.0 119-01.0 11.40 20.00 50.00 76 134 178 233 289 336 44-51.5 119-02.0 14.50 20.00 50.00 93 162 214 281 347 403 44-38.0 118-40.0 5.50 20.00 50.00 42 76 101 133 166 193 44-47.5 118-55.0 23.50 25.00 50.00 186 303 387 490 592 677 44-46.0 118-55.0 23.50 25.00 50.00 232 375 477 602 725 830 44-13.5 118-50.0 27.80 25.00 50.00 107 177 228 290</td>	LAT. LONG. SQ. MI. INCHES PERCENT CFS CFS CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 303 395 44-53.0 119-01.0 11.40 20.00 50.00 76 134 178 233 44-51.5 119-02.0 14.50 20.00 50.00 93 162 214 281 44-38.0 118-40.0 5.50 20.00 50.00 42 76 101 133 44-47.5 118-55.0 23.50 25.00 50.00 186 303 387 490 44-46.0 118-52.5 30.70 25.00 50.00 232 375 477 602 44-13.3 118-50.0 27.80 25.00 50.00 107 177 228 290 44-13.0 118-50.0 11.50 25.00 50.00 104 173 222 283 45-47.0 117-56.0	LAT. LONG. SQ. MI. INCHES PERCENT CFS CFS CFS CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 303 395 486 44-53.0 119-01.0 11.40 20.00 50.00 76 134 178 233 289 44-51.5 119-02.0 14.50 20.00 50.00 93 162 214 281 347 44-38.0 118-40.0 5.50 20.00 50.00 42 76 101 133 166 44-47.5 118-55.0 23.50 25.00 50.00 186 303 387 490 592 44-46.0 118-52.5 30.70 25.00 50.00 232 375 477 602 725 44-13.3 118-50.5 11.90 25.00 50.00 107 177 228 290 353 44-13.0 118-50.0 11.50 25.00 5	LAT. LONG. SQ. MI. INCHES F PERCENT Q2 CFS Q5 CFS Q10 Q25 CFS Q50 Q100 CFS 44-10.0 119-35.0 22.60 20.00 50.00 133 231 303 395 486 565 44-53.0 119-01.0 11.40 20.00 50.00 76 134 178 233 289 336 44-51.5 119-02.0 14.50 20.00 50.00 93 162 214 281 347 403 44-38.0 118-40.0 5.50 20.00 50.00 42 76 101 133 166 193 44-47.5 118-55.0 23.50 25.00 50.00 186 303 387 490 592 677 44-46.0 118-55.0 23.50 25.00 50.00 232 375 477 602 725 830 44-13.5 118-50.0 27.80 25.00 50.00 107 177 228 290

Ž

SUMMARY OF HYDROLOGIC COMPUTATIONS

NORTH CENTRAL REGION 3												

			A	P	TI	Q2	Q5	Q10	Q25	Q50	Q100	
<u>LOCATION</u>	LAT.	LONG.	SQ. MI.	INCHES	DEGREES	CFS	<u>CFS</u>	<u>CFS</u>	CFS	CFS	CFS	
MARK	44-27.0	120-27.5	29.10	25.00	16.00	116	241	330	481	595	75 7	
MEACHAM	44-30.5	118-25.0	16.20	20.00	18.00	74	172	250	387	499	655	
MEACHAM	44-30.6	118-24.5	22,20	20.00	18.00	96	219	316	486	622	814	
MEACHAM	44-30.6	118-24.4	22.30	20.00	18.00	96	220	317	487	624	816	
MEACHAM	44-30.6	118-24.0	22.40	20.00	18.00	96	221	318	489	626	819	
SHEEP	44-30.6	118-23.9	3.00	20.00	18.00	19	48	72	115	153	204	
POLALLIE	45-25.0	121-34.0	4.33	90.00	26.00	423	647	772	952	1088	1276	

EASTERN CASCADES REGION 4												
********	*****	*****		*****							********	****
LOCATION			Р	Ļ	Q2	Q5	Q10	Q 25	Q50	Q100		
LOCATION	LAT.	LONG.	INCHES	MILES	<u>CFS</u>	<u>CF\$</u>	<u>CFS</u>	<u>CFS</u>	<u>CFS</u>	<u>CFS</u>		
BROWN	43-43.0	121~48.0	25.00	13.00	98	180	249	333	412	500		
******											*****	****
					WESTE	RN OREGO	N					
	WESTERN OREGON COAST REGION 1											

			Α	I	ST	Q2	Q5	010	Q25	Q50	Q100	
LOCATION	LAT.	LONG.	SQ. MI.	INCHES	PERCENT	CFS	CFS	CFS	CFS	CFS	CFS	
						_	_					
HAIGHT	43-52.5	123-30.0	4.00	3.50	0.00	190	269	318	382	438	481	
EAMES	43-57.5	123-27.0	5.20	3.75	0.00	279	395	466	560	642	704	

SUMMARY OF HYDROLOGIC COMPUTATIONS

WILLAMETTE REGION 2

LOCATION	LAT.	LONG.	A SQ. MI.	I INCHES	Q2 <u>CFS</u>	Q5 <u>CFS</u>	Q10 CFS	Q25 <u>CFS</u>	Q50 <u>CFS</u>	Q100 CFS
PINE	45-01.0	122-25.0	4.00	3,50	248	368	454	571	664	760
LOWE	44-57.5	121-52.5	6.80	3.75	442	654	800	1001	1160	1322
POOP	44-57.5	121-50.5	1.74	3.75	135	197	241	302	350	398
MT. SCOTT	45-26.0	122-32.5	2.65	2.70	111	177	216	279	329	383
COOL	45-17.5	121-53.0	1.65	4.00	144	208	253	315	363	412
LOST	45-22.5	121-50.0	3.20	4.00	256	372	453	563	650	738
NEWELL	45-21.0	122-35.0	2.10	2.75	94	144	181	233	275	319

APPENDIX D

STREAM CHANNEL HYDRAULICS

NATURAL STREAM CHANNEL HYDRAULICS

	(1)	(Q)	(B)	(ZF)	(ZB)	(N)	(S)	(D)	(V)	(TD)	(RS)
	RETURN	RUNOFF	BOTTOM	FORE	BACK	MANNINGS	DITCH	FLOW		SHEAR	RIPRAP
	INTERVAL	Q	HTDIW	SLOPE	SLOPE	ROUGHNESS	SLOPE	DEPTH	VELOCITY	STRESS	SIZE
STREAM NAME	YEARS_	CFS	FEET	HOR UNIT	HOR UNIT	<u> </u>	FT/FT	<u>FEET</u>	<u>FPS</u>	LB/FT2	<u>D50,FT</u>
WT 600TT	•	110.00	10.00	2.50	2.00	0.045	0.0175	1.70	4.68	1.86	0.37
MT SCOTT	2	110.00	10.00	2.50	2.00	0.045	0.0175	3.00	6.57	3.28	0.66
MT SCOTT	50	329.99	10.00	2.50	2.00	0.045					0.20
NEWELL	2	96.73	13.00	3.50	1.50	0.045	0.0100	1.60	3.56	1.00	
NEWELL	50	278.10	13.00	3.50	1.50	0.045	0.0100	2.80	4.97	1.75	0.35
C00L	2	145.63	6.00	4.00	2.00	0.045	0.0100	2.50	4.31	1.56	0.37
COOL	50	364.07	6.00	4.00	2.00	0.045	0.0100	3.80	5.51	2.37	0.47
LOST	2	258.04	18.00	1.00	4.00	0.045	0.0140	2.10	5.28	1.83	0.37
LOST	50	651.24	18.00	1.00	4.00	0.045	0.0140	3.50	6.96	3.06	0.61
POLLALIE	2	424.59		4.00	4.50	0.045	0.0430	3.30	9.17	8.85	1.77
· POLLALIE	50	1090.91		4.00	4.50	0.045	0.0430	4.70	11.62	12.61	2.52
MOTTET	2	125.52	3.00	8.00	3.00	0.045	0.0500	1.60	6.65	4.99	1.00
MOTTET	50	375.00	3.00	8.00	3,00	0.045	0.0500	2.50	8.96	7.80	1,56
LOOKING GLASS	2	193.70		6.67	46.67	0.045	0.0224	1.40	3.71	1.96	0.39
LOOKING GLASS	50	557.85		6.67	46.67	0.045	0.0224	2.10	4.74	2.94	0.59
TAMARACK GULCH	2	11.00		5.00	7.00	0.040	0.0326	0.80	2.87	1.63	0.33
TAMARACK GULCH	50	55.01		5.00	7.00	0.040	0.0326	1.40	4.68	2.85	0.57
S.F. CHESNIMUS	2	23.24	7.00	9.00	3.50	0.040	0.0300	0.60	3.60	1.12	0.22
S.F. CHESNIMUS	50	103.82	7.00	9.00	3,50	0.040	0.0300	1.30	5.28	2,43	0.49
DEVILS RUN	2	27.89	5.00	5.00	5.00	0.040	0.0160	0.90	3.26	0.90	0.18
DEVILS RUN	50	128.62	5.00	5.00	5.00	0.040	0.0160	1.90	4.67	1.90	0.38
BILLY CREEK	2	44.94	6.00	1.00	1.50	0.040	0.0200	1.30	4.53	1.62	0.32
BILLY CREEK	50	125.52	6.00	1.00	1.50	0.040	0.0200	2.20	6.52	2.75	0.55
CAMP CREEK	2	153.41	10.00	3.50	1.75	0.040	0.0267	1.60	6.75	2.67	0.53
CAMP CREEK	50	619.83	10.00	3.50	1.75	0.040	0.0267	3.30	` 10.06	5.50	1.10
DOE CREEK	2	24.79	8.00	2.00	1.00	0.040	0.0250	0.70	3.91	1.09	0.22
	50	116.22	8.00	2.00	1.00	0.040	0.0250	1.70	6.48	2.65	0.53
DOE CREEK	50	110.22	0.00	2.00	1.00	0.040	0.0230	1.70	0.40	2.00	0.00

5

NATURAL STREAM CHANNEL HYDRAULICS

	(T)	(Q)	(B)	(ZF)	(ZB)	(N)	(S)	(D)	(V)	(TD) SHEAR	(RS) RIPRAP
	RETURN	RUNOFF	BOTTOM	FORE	BACK	MANNINGS	DITCH	FLOW	VELOCITY	STRESS	SIZE
	INTERVAL	Q	WIDTH	SLOPE	SLOPE	ROUGHNESS	SLOPE	DEPTH			
STREAM NAME	YEARS	CFS	FEET	HOR UNIT	HOR UNIT	N	<u>FT/FT</u>	FEET	FPS	LB/FT2	<u>D50,FT</u>
GUMBOOT CREEK	2	141.79	5.00	15.00	7.00	0.045	0.0230	1.50	4.40	2.15	0.43
GUMBOOT CREEK	50	441.63	5.00	15,00	7.00	0.045	0.0230	2.40	5.86	3.44	0.69
ELK CREEK	2	71.28	15.00	0.75	10.00	0.045	0.0190	1.00	3.50	1.19	0.24
ELK CREEK	50	333.16	15.00	0.75	10.00	0.045	0.0190	2.20	5.65	2.61	0.52
CHESNIMUS CREEK	2	91.43	8.00	5.00	7.50	0.040	0.0100	1.50	3.57	0.94	0.19
CHESNIMUS CREEK	50	381.20	8.00	5.00	7.50	0.040	0.0100	2.90	5.03	1.81	0.36
CROW CREEK	2	134.81		2.50	3.50	0.040	0.0130	3.00	4.99	2.43	0.49
CROW CREEK	50	602.79		2.50	3.50	0.040	0.0130	5.20	7.43	4.22	0.84
MEACHAM NO. 1 CRK	2	74.38	10.00	1.50	1.50	0.045	0.0100	1.60	3.75	1.00	0.20
MEACHAM NO. I CRK	50	500.52	10.00	1,50	1.50	0.045	0.0100	4.50	6.64	2.81	0.56
MEACHAM NO. 6 CRK	2	94.52	9.00	3.25	2.50	0.045	0.0150	1.60	4.34	1.50	0.30
MEACHAM NO. 6 CRK	50	624.48	9.00	3.25	2.50	0.045	0.0150	4.10	7.33	3.84	0.77
MEACHAM NO. 7 CRK	2	94.52	10.00	2.50	2.00	0.045	0.0240	1.40	5.13	2.10	0.42
MEACHAM NO. 7 CRK	50	624.48	10.00	2.50	2.00	0.045	0.0240	3.80	8.86	5.69	1.14
MEACHAM NO. 9 CRK	2	94.52	10.00	2.50	1.50	0.045	0.0180	1.50	4.85	1.68	0.34
MEACHAM NO. 9 CRK	50	624.48	10.00	2.50	1.50	0.045	0.0180	4.10	8.37	4.61	0.92
SHEEP CREEK	2	20.14	6.00	0.33	0.67	0.050	0.0600	0.70	4.53	2.62	0.52
SHEEP CREEK	50	150.31	6.00	0.33	0.67	0.050	0.0600	2.30	9.14	8.61	1.72
CANYON CREEK NO. 1	2	215.39	7.00	2.00	1.50	0.045	0.0210	2.70	6.80	3.54	0.71
CANYON CREEK NO. 1	50	674.85	7.00	2.00	1.50	0.045	0.0210	4.80	9.13	6.29	1.26
MF CANYON CREEK	2	110.02	10.00	5.50	5.50	0.045	0.0200	1.40	4.44	1.75	0.35
MF CANYON CREEK	50	350.21	10.00	5.50	5.50	0.045	0.0200	2.50	5.90	3.12	0.62
CANYON CREEK NO. 3	2	105.37	6.00	1.75	1.50	0.040	0.0180	2.00	5.70	2.25	0.45
CANYON CREEK NO. 3	50	344.78	6.00	1.75	1.50	0.040	0.0180	3.60	8.08	4.04	0.81
RUBY CREEK	2	40.29	7.00	2.25	1.50	0.040	0.0260	1.00	4.54	1.62	0.32
RUBY CREEK	50	165.03	7.00	2.25	1.50	0.040	0.0260	2.10	7.19	3.41	0.68

NATURAL STREAM CHANNEL HYDRAULICS

	(T)	(Q)	(B)	(ZF)	(ZB)	(N)	(S)	(D) Flow	(V)	(TD) SHEAR	(RS) RIPRAP
	RETURN INTERVAL	RUNOFF Q	BOTTOM Width	FORE SLOPE	BACK SLOPE	MANNINGS ROUGHNESS	DITCH SLOPE	HT93G	VELOCITY	STRESS	SIZE
CTDEAM NAME								FEET	FPS	LB/FT2	D50,FT
STREAM NAME	YEARS	CFS	FEET	HOR UNIT	HOR UNIT	<u> </u>	FT/FT	FEET	113	<u> </u>	550,11
BIG CREEK	2	230.11	13.00	2.00	0.75	0.040	0.0330	1.80	8.26	3.71	0.74
BIG CREEK	50	725.21	13.00	2.00	0.75	0.040	0.0330	3.40	12.07	7.00	1.40
INDIAN CREEK	2	185.18	9.00	4.50	3.00	0.040	0.0400	1.60	7.72	3,99	0.80
INDIAN CREEK	50	590.39	9.00	4.50	3.00	0.040	0.0400	2.80	10.81	6.99	1.40
GRANITE CRK NO. 1	2	75.15	7.00	5.00	5.00	0.040	0.0230	1.20	4.82	1.72	0.34
GRANITE CRK NO. 1	50	289.77	7.00	5.00	5.00	0.040	0.0230	2.30	6.81	3.30	0.66
GRANITE CRK NO. 2	2	75.15	8.00	4.00	8.00	0.045	0.0250	1.20	4.12	1.87	0.37
GRANITE CRK NO. 2	50	289.77	8.00	4.00	8.00	0.045	0.0250	2.20	6.27	3.43	0.69
GRANITE CRK NO. 3	2	95.30	4.00	1.50	1.00	0.045	0.0270	2.20	6.42	3.71	0.74
GRANITE CRK NO. 3	50	350.21	4.00	1.50	1.00	0.045	0.0270	4.20	9.01	7.08	1.42
SUNFLOWER CREEK	2	134.81	18.00	7.50	5.00	0.045	0.0340	1.10	4.93	2.33	0.47
SUNFLOWER CREEK	50	485.02	18.00	7.50	5.00	0.045	0.0340	2.10	7.42	4.46	0.89
MARK'S CREEK	2	114.67	10.00	2.25	8.00	0.040	0.0080	1.70	3.60	0.85	0.17
MARK'S CREEK	50	599.69	10.00	2.25	8.00	0.040	0.0080	3.70	5.60	1.85	0.37
BROWN'S CREEK	2	99.95	11.00	4.50	2.50	0.040	0.0060	1.80	3.21	0.67	0.13
BROWN'S CREEK	50	399.79	11.00	4.50	2.50	0.040	0.0060	3,60	4.71	1.35	0.27
LOWE	2	440.08	7.00	2.50	6.50	0.045	0.0500	2.50	9.65	7.80	1.56
LOWE	50	1160.64	7.00	2.50	6.50	0.045	0.0500	3.90	12.12	12.17	2.43
POOP	2	10.85	8.00	4.75	2.00	0.045	0.0590	0.40	2.90	1.47	0.29
POOP	50	35.02	8.00	4.75	2.00	0.045	0.0590	0.70	4.83	2.58	0.52
PINE CREEK	2	250.26	10.00	4.50	5.00	0.045	0.0500	1.70	8.14	5.30	1.06
PINE CREEK	50	664.77	10.00	4.50	5.00	0.045	0.0500	2.80	10.19	8.74	1.75
HAIGHT CREEK	2	190.44	17.00	11.25	0.75	0.040	0,0050	2.10	3.06	0.66	0.73
HAIGHT CREEK	50	440.08	17.00	11.25	0.75	0.040	0.0050	3.10	3.99	0.97	0.19
EAMES CREEK	2	280.48	14.00	3.00	1.75	0.040	0.0040	3.30	3.89	0.82	0.16
EAMES CREEK	50	639.98	14.00	3.00	1.75	0.040	0.0040	5.00	4.95	1.25	0.25

APPENDIX E

CULVERT DESIGN SHEETS

LIST OF SYMBOLS AND DIMENSIONS

Q2	Two year flood, in cubic feet per second (cfs)
Q50	Fifty year flood, in cubic feet per second (cfs)
Vb	Culvert barrel velocity, in feet per second (fps)
HW	Headwater at culvert inlet, in feet (ft)
R	Rise of culvert, in feet (ft)
Nb	Manning's roughness value for the culvert barrel
S	Stream channel slope, in feet per foot (ft/ft)
D50	Particle size from gradation curve such that 50 percent of the mixture is finer by weight, in feet (ft)
D	Pipe diameter or rise, in feet (ft)
Ke	Culvert inlet loss coefficient
Н	Energy head for culvert flowing full, in feet (ft)
dc	Critical depth, in feet (ft)
TW	Culvert tailwater, in feet (ft)
ho	Height of hydraulic grade line above outlet invert, in feet (ft)
L	Culvert barrel length, in feet (ft)
So	Culvert barrel slope, in feet (ft)

S. .

fm sn - b a Rec 4 - E					С	ะบ	LV	EF	?T	DE	SIC	ξŅ	S	эн	EET	-						FEDERA	ARTMENT OF BRANSPORTATION L HIGHWAY AGUNDSTRATION: TEN VANCOUVER, WASHINGTON
										1-A			,									-	1-A
101	C		ज्ञात । ज	1141						2.65				•	et tav								HOLTATS
Mt.	Scott	ure	<u> </u>	n r m(<u> </u>	-	16 WAL	+461	1	MIKIMU	<u> </u>				•		
USGS	Quad	- "(alads		, On	egon'	1			:	:	,		- 1	İ					•			
					·			•		25	~	······		_	ANTO.							/	\
		106411	14				3	C1 10 4		7971115	2E		M (M I M A										
•																	/-					<u> </u>	
			111-1-					•		11/3/				_	1		./ <u>.</u> .			~~			
·		rowni	ing							1 1/ 3/					arx. 209	.85 /	j. Grad	4-501_	:0171	1/1 1.	181.	5'	
0.0	1	10 ct				,	w ₂ -			1.7				- 1		•							<u>niv 206, 75</u>
°°2 —	, .		• • • •				. 5 -			<u>.</u>			-	-1	SCÁYSKI:						pprox	mate:	y 25' wide x 25'
Q+#4	3:	30 ç1	fs .		•	·	[₩·₩ _			3,0'				-1		long	<u>x 2-</u>	1/2	<u>deep.</u>				
			VERT	DES	CRIP	TION					-1-		н	EADW	TER	COM	PUTAT	ION			·		
	고유	받	٦	दि	1		₫	SIZE	 	EKLET	CONTROL		,	,	TOUTLET	CONTRO	L HW	HIN	·LSo	т	 	₁	1
SIZE	CRETE VC-EN	CCT	MITERED	PLATE PATE	ĮŽ.	MITERED	SECTION	D	Q											mitt	Ę	,-È	COMMENTS
INCHES	2000 2000 2000 2000 2000 2000 2000 200	PROJECTING	효	155	VERTICAL	ž	ě.	rect		D HA	HW	κ.	н	ಕ್ಕ	dc 10	TW	h _o	L\$ ₀	-HW	HW.	OHT MOLLING	OUTLET VELOCITY	Connection
Ka Cortikisal-	0 2	0.9	0.7	0.7		0.7	0.5	0	٠.											ļ	ě	۵Ä	
	1	<u> </u>		-									 		 		1	<u> </u>				1	
Concret	e Bo	k Cul	vert		<u> </u>	<u> </u>											<u> </u>						
101.00	ا۔۔۔ا		ر ا	, _D .		J., 7	J. 011		- 661	- f or 1	2 +60 0	Lan.				İ				1			
100.	(spa	1) X	8 -0	K15	e w	ועו ו	<u> -0 .</u>	1191	patrie	5 10r i/	2 the s	pan	ļ		ļ	ļ <u> </u>	<u> </u>	 			ļ <u>.</u>		· · · · · · · · · · · · · · · · · · ·
		-			İ		1			0.00	2.5	١, ,	, ,	, ,	١.,	, ,		١,,	, ,		ا م د	,,	Dannal Valoaited
Wing_W	lls.	at 35	o an	ple_	 	 —	 	-	110	0.33	2.6	0.4	0.1	1.5	4.8	1.7	4.8	3,1	1.8	0.2	2.6	1 1 1	Barrel Velocity*
<u>Wing Wa</u>	115	at 35	o an	nle				7	330	0.7	5.6	0.4	0.5	3,3	5.7	3.0	5.7	3.1	3.1	0.4	5.6	∙15	Barrel Velocity*
]		
							 		 -			1			 -	 			<u> </u>			<u> </u>	
	l						l														<u> </u>		·

SUMMARY AND RECOMMENDATIONS

*Average velocity in unbaffled culvert span.

Due to high outlet velocities and high scour potential, the culvert outlet appears to be a potential barrier to fish passage through the culvert.

O est corrent plantife ton bome butt . .

Cini (ilini fittet

fn. 6-111				· ·	C	ะบ	LV	EF	?T	DE	SIC	Ņ	9	Н	E.E.7	Γ						FFOFMAI	. HATMENT OF TRANSPORTATION, HIGHWAY ADMINISTRATION, TEM VAHCOUVER, WASHINGTON
				hiling -		-		<u>. </u>		1-8	LA ,		<u> </u>									_	1-B
Newe	11 Cr									2.10			14WAE	bu, £s	12	MIK (MU	4			•		\	
USGS	Ouad			an Ci	tv. (Oneac	on"												/				
	9444	-	51,034	31 24	<u> </u>			/2 3						-	AKIT .								
		LOCATO	64					/33		25	2E	<u>.</u>	MC EI ØI AI	-1			/					· ·	
			lide(A								, 					•					 _		
	В	rown								11/3/	/88				.1		/ <u>·</u>	- : -	. 617	7	~~~ 		
		C=	IC-EB	61			•			3.66				_	ef t.A	, <i>'</i>			.01		<u> 439</u>		ner.
۰۰.5 —	, 9	5 çf	<u>s</u>			— ¹	**2 -			1.6				-1	REHARKSL	Grav	el_a	and_ba	ulder	z plac	ed in	side t	he culvert barrel.
Q+++	2	75 c	fs			1	A.M _			2.8'				_[<u> </u>							· <u> </u>
		CUL		DES				[К	EADW			UTAT				,		
	눈문물		<u> </u>	ij	بد ا	_	ě	SIZE		IKLET	CONTROL				OUTLET	CONTRO	L HW	• # 1 1/ ₀	-L5 ₀ _	1	<u> 2</u>		
SIZE INCHES	CONCRET BROOVE-EN	PROJECTM	MITERED	STRUCTURAL PLATE (witches)	VERTICAL	KITERED	END. SECTION	PEET	a	ο HÃ	нw	ו	н	đc	<u>dc+D</u> 2⋅	tw	h _o	LS _o .	нж	HW.	CONTROLLING	OUTLET	COMMENTS
Ke Caelijeiant-	0.2	0,9	1.0	0.7	0.5	0.7	0.5	0	<u> </u>						ļ		•	ļ. <u></u>	ļ	ļ <u>.</u>	8	->	
14' d	amet	er p	pe s	et a	pro	imat	ely 3	bei	ow the	natura	stream	bed.				1				1			
Use e	uiva	lent	15'-	7" x	10'	6" F	ipe-A	rch															
	 						x	10.5	95	0.2	2.1	0.5	0.10	1.0	5.7	1.6	5.7	4.4	1.4	0.1	2.1	4.0	Barrel Velocity
							Х	10.5	275	0.4	4.2	0.5	.50	1.6	6,0	2.8	6.0	4.4	2.1	0.2	4.2	.6.0	Barrel Velocity
							-							ı									
SUMMARY .	AND R	CCOM	MEND!	TIONS																· 			
For Q								0		2.0 fee													
For Q	50 =	175 (cfs	Λ P :	= 6.0	0 fps	S	0	q p =	3.7 feet	t (n = (0.045)											
															•								

/# +#-470 [Air 5:81]					С	ıU:	LV	EF	· T	DE	SIC	ξŅ	S	3H	EET	-						FEDERA	ARTMENT OF THANSPORTATION MIGHWAY ADMINISTRATION TEN VANCOUVER, WASHINGTO
		7007	(61 +		·					****	1-C				titvir	7164x						_	1-C . station
C001_	Creek									1.65	10.00		_ 14 mat	PH.E1		MIXIMO	K		$\overline{}$				
usss	Quad -				on,	0rego	on"				:	<u>. </u>						/					
	,			***			24			35	7E				AH)T = _							\	\
	100	41144	1			•	80	£1100		-	BANA	t.	46 1104 A	-			1						
		M	1-6-					-		141									•	~~~	~ <u> </u>		
 -	Brow		g)T						11/3/					<u>arx 2014</u>	<u>4.1</u> /	<i>;</i>	 50+.	:0095	<u>83</u> 7[.	48'		
<u>••</u> 2 —	145	cfs				т	** 2 '-			2.0'				{	REMARKS	Grave	ance 1	l bou	lders	placed	insi	de the	culvert barrel.
Q+3+	365	çfs				1	'**** _			3.3'					Log and	d-rock	(poo	ls cor	nstruc	ted do	wnstn	eam fr	om the culvert -
				DES				J		<u> </u>			Н	EADW	OUT let.	COMI	PUTAT	HOI					
	, ,	2 1	<u>`</u>	FIFE F	I		ş	SIZE		IKLET	CONTROL		· · · · · · · · · · · · · · · · · · ·	,	ONITEL	CONTR	и ни	(• H 1 No	-L50	·	<u> </u>		
SIZE INCHES Ka Cartikinal	CONCAETE ***	- 1	03831H	STRUCTURAL		NITENED	C END SECTION	D	a	D HA	нw	K.	н	đς	₫ <u>c</u> †0 2:	T W	h _o	L3 _o ·	нж	HW. D	COMT MOLLING HW	OUTLET	COMMENTS
	-		\neg				i		tina	nnmvie	A viote	bol	tho	, nati	wal str						1		
<u>14.7' s</u>	pan x y	.5	+ r1	<u>se a</u>	<u>cn</u>	ហបា	rop o	1 100	cing o	pproxiii	nery 4	bero	NY UTE	Jau	nai Su	Palli D	<u>u.</u>	╁─	┼─	1—	 	 	
Use equ	valent	1	'-0'	x 5	-7"	arch	<u> </u>	<u> </u>	ļ	<u> </u>		<u> </u>								<u> </u>	ļ	<u> </u>	Outlet velocity
	_x	1						5.6	145	0.45	2.5	0.9	0.5	1.6	3.6	2.0	3.6	.46	3.6	0.6	3.6	5.6	based upon TW
							İ								1					1		10.6	Outlet velocity
	X	\dashv	\dashv	—		_	 	5.6	365	1.0	5.6	0.9	2.5	2.8	4.2	3.3	4.2	1.46	6.2	1.1	6.2	8.6	based upon TW
					_															<u> </u>	<u> </u>		
	1. 1	-																					
SUMMARY .	AND RECE	DUUI	ENDA'	TIONS		·	L	L	I	· · · · · · · · · · · · · · · · · · ·	l	·		L	<u> </u>			<u> </u>	·		<u> </u>		· · ·
For Q2 For Q50				•	Vb :	= 4.6 = 6.3	6 fps 3 fps		0 0	db = 2 db = 5	.5 ft. .6 ft.	(n = . (n = .	.045) .045)	in th	ne culve ne culve	rt bai rt bai	mel. mel.						
Note: tail wa			t ba	rrel	dep	th ar	nd vei	locity	cond	itions a	re prob	ably r	nore r	repres	sentativ	e of	the o	utlet	cond	itions	than	those	based upon the

O BIL ENGLAY BURELLE LIN PRIME LINE . O LIGHT IL IN BRESENT

- -----

O bo is fit extills of

7 R 60 - 814 (B.). 1 - 10					C	U	LV	EF	∵	DE	:SIC	ξŅ	8	SH1	EET	-						FEDERAL	TWENT OF TRANSPORTATION KIGHWAY ADHWISTRATION'S N VANCOUVER, WASHINGTON
								·			1-D											_	<u>1-D</u>
Lost	Creek	(1111					•		3.2	Alband Adi			- Incti	treati	MIKLMU	w					\	. STATION
USGS	Quad		iinika Will_		Lake,	_0re	gon"			;	AIRAGE AAI	· <u>·</u>						/	/ .				
				har			21			25	8E		•		ANT -								
		<u>i ačatic</u>					• 1	6164	•	******	***		Préviés#										
	Br	างพกร								11/3/	′88				J. grx 237	15/	/ <u>:</u>		. 014	<u>~</u> 亿.	<u> </u>		
9.0	. 25	55 cf	S	BT		T	W=0 '			2.1		·		_		•					വിക്ക	—— d insid	e the culvert
6.11 - 5 —	65	:0 cf	s			· 1				3.5'	<u></u>				barrel		<u> </u>						•
		CUL	VERT	DES PIPE	CRIP	TION						Y	Н	EADW			PUTAT	_		·		<u> </u>	
SIZE	CCHCAETE BROOVE-END PROJECTING	ICCTING	WITERED	TRUCTURAL:	VERTICAL	KITERED	END. SECTION	SIZE D FEET	Q.	HA. TKTEL	SEW SEW	к,	н	4 c	4c10	TW	h _o		-LS ₀	HW.	CONTROLLING NW	VELOCITY	CONNENTS
Xa Coellician +	5.0	0.9	7.0	0.7		1.0	0.5	0_	<u> </u>						ļ	0	0		<u> </u>		8	0 5 .	
18.2' s	pan x	5.6	' ri	se ar	ch w	ith	expose	d cor	crete	footing	s (2.5	to 3	5' ve	rtic	expos	ure)							
Use equ	ivald	nt 1	3 . 2'	spar	x 9	11'	rise .													;			·
		<u></u> -						9.1	255	0.35	3.2	0.9	0.5	2.0	5,6	2.1	5.6	0.7	5.4	0.59	5.4	6.5	Outlet velocity based upon TW
		X							655	0,65	5.9]	1.3	i —			<u>[</u>			0.75			Outlet velocity based upon TW
																					-		
	<u> </u>					-								-	 								
SUMMARY .	AND R	ECOM	MEHOA	LTIONS	I			1		l	<u> </u>	·	l	L	 	L			l	!		<u> </u>	
For Q2 For Q50				Vb =						2.5 ft. 4.7 ft.													

Note: The culvert barrel depth and velocity conditions are probably more prepresentative of the outlet conditions than those based upon tail water depth.

O 621 CHIETER GIRBLETE THE BOMES BIELE -

		CULVERT	/EI	L L	DE	DESIGN	Z	\overline{o}	SHEET							PERCALL PERCALL US DEPA	UP DEPAINENT OF TRANSPORTATION FEDERAL HIGHWAY SOMMITTATION ALENDATE, WASHINGTON
Polallie Creek	740,461 14W				C-7				 	MILE STATE	TATION E NINCHEN						(-7 1/4/10 K
USGS Quad - "Dog	"Dog River"					4344 A4E4				<u> </u>						/	
	1		5		X	10E				 - <u>*</u>							
:				-								1					<u> </u>
Browning					11/3/88	88	<u> </u>		 I	_ §			. }	} <u>-</u>	3		<u> </u>
9.0 425 cfs	.	\$ E			3.31					7.2082) (2802.2	700 S	6. 4. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	002	(2802.2) (-34-34-71) (-34-17) (-34-17)		و + غ ا_	51) for the 84" (NO (2798.9)
1090 cfs	ړ	· • • • • • • • • • • • • • • • • • • •	_		4.7					2'+ de		or ho	le is	ocated	at th	2'+ deep scour hole is located at the outlet.	
CULVE	ERT DESCH	DESCRIPTION						HE/	HEADWATER		OMPO	COMPUTATION	1 1				
					וארנו	CONTROL	Ì	Ì	٦	OUTLET C	COXINGL	HW•H176	1 ho - L So				•
SIZE INCHES CONCRETE CONCRETE CONCRETE CONCRETE CONTRIBUTE CONTRIB	PRACTURA TAMA C.	YERTICAL SHITERES SHORES CHAPTER CH	2 17E	0	A A	H.W	×	Ξ	21	440	≯ 0	ه م	LS ₀ HW	HT.	CONTROLLING	VELOCITY	COMMENTS
12.7' × 7.25' OP-	-and with	OP-anth with concrete-1 ned invert	<u>-</u>	nvert	A] SO	84" CMP		flood relief pipe	f pig				1				
12.7' × 7.25'	×		7.2	7.25 690	1.3	9.4	0.7	3.0	5.0 6	6.1	4.7	6.1	4.7 4.4	0.6	9.4	8) 5.	
	×			400	1.4	9.6	0.7	4:5	5.25 6	6.1	3.3 (6.1 3.	3.3 7.3	1.0	9.8	19.0	,
12.7' × 7.2\$'	×		7.25	5 625	9.0	4.4	0.7	0.5	3.0 5	5.1	4.7	5.1 4.	4.7 0.9	0.1	4.4	.21.5	
18	×		7	<u>8</u>	0.7	4.9	0.7	0.7	3.3 5	5.2	3.3	5.2 3.	3.3 2.6	0.4	4.9	15.0	
										 			<u> </u>				
SUMMARY AND RECOMMENDATIONS	NDATIONS																
For Q2 = 265 cfs For Q60 = 690 cfs For Q2 = 160 cfs	8888	Vb = 21.5 fps Vb = 29.5 fps Vb = 15 fps	ଜନ୍ନ	8.8€€	2.2 ft. 2.3 ft.	(n = 0.015) (n = 0.015) (n = 0.024)		for 12.7'x 7.25' pipe arch barrel for 12.7'x 7.25' pipe arch barrel for 84' QMP culvert barrel.	7.×.7 7.×.7 9.9 9.9	35' pig	e arr barred	pipe arch barrel pipe arch barrel srt barrel.	면 면				
\$15 PM PP PP PP PP PP PP PP	1 0	ed .	ע); - -	ı		5 5		יו אפו ר	<u> </u>						
O use courtil plugitel ses noch ever	. 1941	the court na	inti,	5 E	0 % 15 11 11/11 11 fell 110 11	<u>_</u>											

14 10 114	-		-			,		-									ļ.	10 50	US DEPARTMENT OF TRANSPORTATION
			Ö	CULVERT	/EF	 		DESIGN	Z	ഗ	Π	SHEET						ACCION	TER VANCONTA, WASHINGTON
		,					14-A												14-A
Motte	Mottet Creek	ler.					10.8				· 5	1, 1, 1, 1, 1	E' KININUM					' /	STATION
SBSO	USSS Quad - "Jubilee Lake"	Jubilee La	as				 	,	<u>.</u>			<u> </u>						/	
	1.	3		"	83		₹	335				— }		1			-		
	10(4104			<u> </u>	111111		1674380) in		ECTION A	1			1					
	Browning						11/7/88	88			1	_ }							1
6.6	1_	=		\$ #			3.0'				ਤੌ ¹ : 	9003.C	, is	4. 4. to	Gree-So- CoUS/3 /, U	7 7 2	· -	2	Account of analyse within the cut let area of the
 	375 cfs			7			4.9'				¥ ∂ 	quivert.		sition	and single	a at	a sla	ormed t	Deposition is due to pools formed by log barriers.
	CULVERT DESCRIPTION	T DES	CHIPT	ОН						포	HEADWATER	EA	COMPU	COMPUTATION	٦				
		1				<u></u>	INLET (COXTABL				OUTLET C	CONTROL	HW . H f ho	1 ho - L So				•
SIZE SKCHEN CONCRETE CONCRETE CONCRETE	#17310A4 %	ANUTURIZ TAJA TORITIES	JADITABY &	ITSSE ONS SECTI	3 a 1 a	0	H.K.	HW	₹.	×	4	4+0	≱ •	ه مي	LS ₀ HW		CONTROLLING	VELOCITY	COMMENTS
5*-8" >	7'-0" X				7	125	.55	3.9	0.7	0.5	3.2	5.1	3.0	5.1 6	6.3		3.9	16.4	Barrel Velocity
5'-8" >	7'-0" X				. 7	375	1.35	9.5	0.7	4.0	6.0	6.5	4.9	6.5	6.3 4.2	9.0	9.5	5 20.5	Barrel Velocity
				<u> </u>						<u> </u>			-				-		
																			,
SUMMARY	SUMMARY AND RECOMMENDATIONS	ATIONS			-]						1	1						
For 02 For 050	For Q2 = 125 cfs For Q50 = 375 cfs		₽ ₽ ₽	Vb = 16.4 fps Vb = 20.5 fps	75 75 75	ଭ ଭ	G= 2. G= 3.	2.0 ft. (n = 0.024) 3.6 ft. (n = 0.024)	n = 0. n = 0.	024)	for to th	for the culvert barrel for the culvert barrel	ert ba ert ba	rrel. rrel.					
Note: outlet	Note: The culvert barrel velocity and depth are representative for the first 80'+ of culvert length. outlet is controlled by the log pool. This is supported by the evidence of stream bed deposits within	Samel 1 by t	velo fe lo	city ar g pool.	rd dept This	chare issug	represer oported	ntative by the	for the	ne fir nce of	st 80' strea	+ of cu	Ji vert Jeposi	lengt ts wit	h. Th	The 30' of this area.	of cul	vert le	The 30' of culvert length mear the this area.
9 151 CM1(4)	G 151 tolifet lientife tes bibes fulfills	2113	141	Circle is successfully	i i	6 % T	Oby n til pitili if	_									.		
	•					٠													

CULVERT DESIGN S	SHEE	 -					US OCTA FEDERAL REBION T	US OFFARINENT OF TRANSPORTATION FEDERAL MINNERS ADMINISTRATION ALBUM TEN VANCOUVER, WASHINGTON	
14-B Little Lookingglass Creek 18.2 Indian nim		#0.4 m.m3						14-8 174710M	
USSS Quad - "Jubilee Creek" 2 3N 39E	<u>\$</u> 					j			
Browning 11/7/88 9-2 195 cfs 1**2		Are 2959.3 Com-sa-0.0164.7. to 1107	cust ls and	604-50-02:0164-/- 1-110	34.1/1.80 S	Se th	stree	m bed of the	
560 cfs	arch	ch.							
CULVERT DESCRIPTION METAL PIPE PELDWALLS EN ET CONTROL	HEADWATER	۱ ۱	151	FATION					
0. \$400×5€116 0. \$400×5€100 0. \$1120×510 0. \$1120×510 0. \$1120×510 0. \$1120×510 0. \$1120×510 0. \$1120×510 0. \$1120×510 0. \$1120×50 0. \$11	3) ~	H. H.	ME TILL	CONTROLLING HW	OUTLET YELOCITY	COMMENTS	
17'-6" x x 8'-1' x 8.1 195 0.3 2.4 0.9 0.5	1.6 4.9	1.4	4.9	1.8 3.6	5.0.4	3.6	10.3	Based upon dc.	
17'-6" x x 8'-1" x 8.1 560 0.65 5.3 0.9 2.1	3.4 5.9	2.1	5.9	1.8 6.2	9.0	6.2	11.9	Based upon dc.	
								,	
									-
							!		
subuking and accompliances 0 db = 2.4 ft. (n = 0.045) for the culvert barrel For 0.050 = 0.065 for the culvert barrel For 0.050 = 0.065 for the culvert barrel	he culvert he culvert	barrel.	į						
Note: Gabion weir may reduce outlet velocities during high flows. The bar velocities than those computed using dc.	The barrel velocities are probably more representative of outlet	ities ar	a prot	ably mo	na Tepra	esenta	tive of	Foutlet	
O by contre pinetic to the roll of openity of the ballon, or the cities of the ballon of the bold angular file and the contress of the contress of the ballon of the ballo									

E-7

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1.												10 EQ	PARTMENT OF TRANSPORTATION
	CULVERT	냅	7	DE	DESIGN	Z	(J)	SHEET	닏	.•						FEBERL HIGHWAY ABMMAN MASHINGTON, REGION TEM YANGOVER, WASHINGTON
				15-A				ļ. <u>.</u>								15.A
	to Chesnimus Cr.	ئى .		2.0				·	E LEVATION	Vation 2' Minimum						. БТАТЮИ
"unped) edemail - perio 3(5)?				.	vive Secured	<u>.</u>						1			/	
Votes (und - unitaria, orespond				1.	1				— į		1			•		
9912781	₹	×1,1110		4	4/1						1			j		
HIGHE) I V (1	_				{	\{		
Browning Cutette at				11///88 	88			<u>,</u>	9 14 4356 ,6	3.	Craft-5a.	- 1	032617	g.		nr. 4355.6
6.2 55 cfs	7 4			1,4'					ACKARKI							
1	1 2															
EULVE KI	1			IKLET C	COXTROL		=	HEADWAILER OUT		CONTROL	COMPUTATION	1 Po - LS	۱.	-		
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	END SECTION	D D	0	1	*	٠,	Ξ	ÿ		≥ •	ه م	LS ₀ HW	<u> </u>	CONTROLLING	WW OUTLET VELOCITY	COMMENTS
 		3.9	Ξ	0.3	1.2	0.9	0.1	0.8	2.4	90	2.4	1.0 1.5	5 0.4	4 1.5	5 5.5	Barrel Velocity
5.0' x 3.9' X		3.9	52	0.7	2.7	0.9	0.4	1.5	2.7	1.4	2.7	1.0 2.1	0.5	5 2.7	7 9.6	Barrel Velocity
														<u> </u>		
								<u> </u>								
	ļ							-	 — 		-			ļ Ī	 	
SUBLARY AND ACCOMMENDATIONS FOR Q2 = 11 cfs Vb = 5.5 fps For Q50 = 55 cfs Vb = 9.6 fps	00	8 9	= 0.5 ft = 1.2 ft	ft. (n = (ft. (n = (0.024) for the culvert barrel. 0.024) for the culvert barrel.	for t	e cul	for the culvert barrel for the culvert barrel	arrel. arrel.	1	†		 		1	
Note: The culvert barrel does not significantly	not signi	ifical		constrict the natural	the na	tural	strea	stream charmel.	re].							
VI EIST STREETSTOF FOL DESSE SPEECE CONTROLS - DESCEN	EINT CHAIR HAN	'	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 11 11 11 17 19 10 10 10 10 10 10 10 10 10 10 10 10 10	_	i		,								

E-8

Intraha Intrah	CULVERT	VE.	RH	С Гт		Z	Ū		ŀ			•		: E	STOR TER	READM TEN VANCONER, PASKINGTON
uth Fork Chesnimp SS Quad - "Imraha Browning Cucue F 107 cfs LETAL F]	5	7.	Ō	֡֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟	- :							
uth Fork Chesnims SS Quad - "Imraha Browning Cutoffs 107 cfs Lutter F				15-8												15-8
SS Quad - "Imraha Luctrine Browning Crector 23 cfs 107 cfs	s Cheek			4.8			1 mar 1 mar 11		E MINIMOR	¥ 5						81A110H
Browning create a 23 cfs 107 cfs 107 cfs	Oregon"	•		•	***************************************			-			1				/	
Browning create a 23 cfs 107 cfs	•	24		Ŕ	-: 4Æ			— ≹ 			\				/	
Browning create 23 cfs 107 cfs		110164		10 4 4 4 4 4	BANGE		MENHAR	<u> </u>		1						ļ
23 cfs 107 cfs				11/7/88	x2			 {	,	\downarrow			}			
107 cfs	3 M			0.6				- 0.02 <u></u>	arr424/13,	3	Crack-5e.	-1 / OFT	} : 	- P	1 "	A546.2
	7	\		1.3'				REKARKS:								
TK LAL	100	\mid					HEA	HEADWATER	100	COMPUTATION	NON					
91	FEADWALLS			INLET C	COXINOL			OUTLET	ET CONTROL		HW-H+ho-	٠٢٥,				
NE CATTRIAN - 0.5 P. S. D. S. D. S. D. S. D. S. D. S. D. S. D. S. D. S. D. S. D. S. D. S. D. S. D. S. D. S. D. S. D. S. D. S. S. D.	MUTTURIZ C. L. L. L. L. L. L. L. L. L. L. L. L. L.	1332 OH3 S	0 ,	NA C	НЖ	×.	I	\$ ₽12	ž •	2 0		<u>*</u>	134 Mg	CONTROLLING HW CONTRET	VELOCITY .	COMMENTS
6.7' X		6.7	23	0.25	1.7	0.7	0.1	1.0 3.9	9.0	3.9	1.1	2.9	0.4	2.9	8.0 B	Barrel Velocity
6.7' X		6.7	107	9.0	4.0	0.7 0	0,3	2.75 4.7	1.3	4.7	1.1	3.9	9.0	4.0	12.5 B	Barrel Velocity
-	-															
									_							
							ļ 							-		
-							-									
SUMMARY AND RECOMMENDATIONS FOR Q2 = 23 cfs For Q50 = 107 cfs Wb =	No = 8.0 fps No = 12.5 fps	6.0	9 9	0.9 ft. (2.0 ft. ((n = 0.0 (n = 0.0	24) fc 24) fo	or the	(n = 0.024) for the culvert barrel. (n = 0.024) for the culvert barrel.	barrel		1			-		
Note: The culvert does not significantly constrict the natural stream channel.	s not signifi	cantly	constri	ot the na	tural s	tream	chann									
500 taxes tot 1717am 1117am 520	-		2													
DEC 1151 HALKSIDE THE AICH CHUCKES	נושו נוואנו ווזוו															

:

111.0	1 0 d > = 0		l h	ני	70.01	2	U		-						US OCFAL FEBERAL ACCOM	US DEFABLICATION OF TRANSFORFATION FEDERAL HIGHER TODAYEN, WASHINGTON RESON TEN VANCOUVEN, WASHINGTON
)	-	-	ָ ֡֝֝֝֝֡֝	0 0	2	Ď	֡֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝	 							
				9-0								. ,				<u>.</u>
Devil's Run Creek	J=:			6.]					Erration P. Control	3					l	STATION
	Jan V m				vive Henred	_	13 MAT BALE	5				\			/	
USS Quad - "Poison Point.	Point, Oregon"	_						I			`				/	
	2	۳		8	4 <i>T</i> E			- \$ -	 - <u> </u> -		\					
10117)01		101311		100.140	11.17		BE RIBLAR									
4)*1)124				3170				· ·		7		\ 	}	t		1
Browning the trace of				88///I	× 			를 [nr 4386.1	\ \	C14-5-	0.0135'/'1. 44:3	5,7,0	44.3		4385.5
4.2 28 CFS	7*7	2		0.9				- ACMARKE							.	
129 cfs	181		İ	1.9'				·				İ	į			
TORNING	DESCRIPTION	-						- 1		1,14						
TOTAL TOTAL	PE PEABWALLS	HK		אונו	CONTROL		Ž	ACAUMAI EN		CONTROL HW-MI	HW-H1h	1.50				
CONCRETE #NOUNCETH PROUECTING PROUECTING WITERED	VERTICAL WITERED	SY O STATE	о . Ш		HW	×	=	2,2			1.30	₹ .	HW.	HTAOLLING WH	TIOCITY	COMMENTS
X4 Cartikins - 0.2 0.9 0.7	1.0 2.0	0.5						-	-	•	\downarrow			юэ	^	
10.2' x 4.5' X		4.5	8	0.25	7.7	0.7	0.3	0.7 2.6	0.9	9 2.6	9.0	2.3	0.5	2.3	4.5	Based upon 7W
10.2' × 4.5' X		4.5	129	0.60	2.7	0.7	0.	1.6 3.1		.9 3.1	9.0	3.5	0.8	3.5	8.2	Based upon TW
			,	•												
		}		-		-										
						\vdash	-			-	-				1	
		ļ				<u> </u>	<u> </u>			<u> </u> 	<u> </u>				,	
SUMMARY AND RECOMMENDATIONS	SNOI					1		$\frac{1}{2}$		-					1	
For Q2 = 28 cfs For Q50 = 129 cfs	Vo = 3.7 fps Vo = 5.7 fps	ତ ଡ	9 8 = 1	1.1 ft. ($n = 0.040$) for the culvert barrel 2.5 ft. ($n = 0.040$) for the culvert barrel	in = 0.0	740) fo	ir the	cul vert	barre barre	<i>-: .</i> ::						
Note: The barnel velocity is more representative	city is more	reprreser		of the outlet velocity for this culvert.	outlet \	eloci	ty for	this cu	l vert.							
O 15f buffil startit fit 1986 forth	1 . 6741-17 IS tunter	una,	20	וון מנוזט זון	_						-					
psi list biafnston fol pica cotaft		11711	- TET	= =												

111111111111111111111111111111111111111		'							-	1.					1					-	. DCP44	TWENT OF TRANSPORTATION
			٠.	0	5	>,	CULVERT	L ~	DE	DESIGN	Z	U)	Ĭ	SHEET							71 HOID 16	FEDERAL, MISNWAT ADMINISTRATION, REGION IEM VANCOLVER, WASHINGTON
									C-3		}		 									ر ا
Billy Creek	1 .	3m13 1316044	1						10.7				· .	ELEVATION II.	E' WIKINUK						l	41ATION
USS Orad - "Poison Point,	P	Poj so	Poj son Poj		Oregon"	-E			1		<u>.</u> .			ļ			1					
			3			~			≅	47E				k-			\				/	
	14117391	I				Ĕ	110101		104444	7741		P.C.AIDAAH	_			V						
	Browning	รรณะเล							11/8/88	88						J			}			
0.0	45 cfs	totales fs	E		•	. 57 34			1.9.1					9.03.3876.4 T	5.4	2	1 1	Code-50. 0.228 // t. 78:8	/ / ! !	89 88 188		3874.6
	197 cfs	<u>3</u>		.	:	7 . 1			3.0'					BEKARKI.	1 1	ADOME		(6.3" × 5.0" pipe-arch)	1 (3)		(6.3" x 5.0" pipe-arch)	
	13	LVERI	DES	CULVERT DESCRIPTION	TON							=	HEADWATER	TER	COMP	COMPUTATION	N O				\vdash	
<u></u>	ᄔ	<u> </u>	1						IKEL	COXTROL				늘	COKTROL HW. HITO-LSO	Ψ¥	H 18	.L.S.	П			
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	KIT33LOR4	0383TIM	(AUTDUATE 3TA.M (esestive)	VERTICAL	SASTIM	TOS\$ -QKZ	5 1 2 E	.	취	HW	*	Ξ	ţ	£ 40	ΥL	2	. 68.1	H.W.	nut.	TASELING.	UTLET TEOCITY	COMMENTS
Ka Cartikind - 0.2	2	5	-	33	5	5	٥								۰	•		•		$\overline{}$	· ·	
6.3'x 5.3'	•	_×					5	45	0.45	2.3	0.7	0.5	1.6	3.3	1.9	3,3	1.8	2.0	04.	2.3	4.5	Based upon TW
	>	_×_					. 22	197	0.75	3.8	0.7	1.8	2.7	3.9	3.0	3.9	1.8	3.9	8	3.9	7.1	Based upon TW
48" reller 19	p1년 -																					-
																		-		+	 	
																			,		-	
sublant and reconnendations For Q2 = 45 cfs Vb = For Q50 = 125 cfs Vb =	cfs 5 cfs	- FEE	55 S	Vb = 8.0 fps Vb = 10.7 fps	fps / fps			88	1.3 ft. ((n = 0.024) (n = 0.024)		d d	e Gri	for the culvert barrel for the culvert barrel	rrej.		1	1	1	1		

O bit ergiete fingtifet fin bien toets . O porte be bemein, O be, it tit ginite et

Assume the 48" relief pipe would carry 75 cfs during a Q50. TW is based upon weir elevation and height of flow above weir less the pipe outlet elevation.

18.19.111																			ŀ		-	US BEFA	US DEPARTMENT OF TAXMSPOATATION FEDERAL HIGHWAY ADMINISTRATION:
			•	-	C		CULVERT	T T	_	DE	DESIGN	Z:	(I)	I E	SHEET	,			•		-	ALGION 1	EN YANCOLYEN, WASHINGTON
	ļ				 .					B-2													B-2
		ran i	Lubidel 1271043							104474			,	ļ·	C. LYLLEW	Ī			ļ			l	HITION
5	Camp. Creek		700	ļ						48.2	7	-	Itamat best		· <u>-</u>	Z. CINIKOK	Ţ	ļ	\				
ššín —	USSS Quad - "Inhaha, Oregon"	· [=]	rhaha,	\ <u>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\</u>	_uot																	/	
				;			8		+	! ∴ <u>≅</u>	£ ₩		•	 -	}]	1	\					,
	-	1014194					11(1)		Ē	Per I Har	744	֝ ֭֭֡֡֜֜֝	441414				V	İ		j			
	•	į	**********							111				<u> </u>			`		(}	1		 - -
<u> </u>	Br	Browning								11/8/88	, , , , , , , , , , , , , , , , , , ,		.	 	1072	2 1			0240	0 07401/1	بر ج		1
6	155	153 cfs	11 45			\$				1.6'					777	J	ž	A \$			<u>}</u>		(nr. 1969.7
<u> </u>	615	619 cfs	,,			7				3,3'	!			•									
		3			110		-						=	HEADWATER	1 4 4	1705	COMPUTATION	2					
		WETAL		IPE PICADWALLS	ADWAL	Ц	Ī				AUTERI				11111	I٦		;					
	OH!	9#4			43		\$12E	<u> </u>	<u> </u>	וארניו ביורי	101				1110	-		11W - H 1 No - L 20	100				
SIZE	1380HG0 3-3V00R8 1733LG#4	TOBLOM	ZASTIM KUTOUATZ	(UTDURT) 3TA.M (4343TM) ADITRIV	VERTICA	END: 3 EC.	,			취o	3	ν.	×	4	4.40	*	29	L3,	¥	MA MA	TROLLIN WK	UTLET ELOCITY	COMMENTS
Ke Caelikias - 0.2	i 	2	7.0		5.0	-	2	\dashv	.							٠	۰				***	is l	,
8' Dia. w/l' high baff es		ē	affle	<u></u>	1			 												j			
Equiv.	7-1/	150.	×				7.5	3 153		9.0	4.5	0.7	0.4	3.3	5.4	1.6	5.4	2.4	3.4	0.45	4.5	8.4	Barrel Velocity
Equiv.	7-1/\$	-	×				7.5	619		2.0	15.0	0.7	5.5	6.3	6.9	3.3	6.9	2.4	10.0	1.3	15.0	13.8	Barrel Velocity
																		_			-		
			<u> </u>	-	 -	<u> </u>		<u> </u>	_									<u> </u>					
SULHARY	SUPPART AND RECOMMENDATIONS	CONIN	ENDATA	, X			,		;] ;					1					
For Q2 = 153 cfs For Q50 = 619 cfs	ે 153 લ = 619 c	fs :fs	> >	$v_D = 8.4 \text{ fps}$ $v_D = 13.8 \text{ fps}$	3.4 3.8	र्घ इत्	ම ලා	9	0 = 3.2	5. f.f.	n = 0 	0 0 0 0 0 0	for Grad	e e	3.2 ft. $\{n = 0.040\}$ for the culvert barrel 7.5 ft. $\{n = 0.040\}$ for the culvert barrel	irrel.							

E-12

Note: Baffles and sediment deposits reduce the barnel velocities due to increased roughness.

O 15 CATES PARTIE IN UNO PUG . O 181 IL 18 YEART .

#14.07	CULVERT	>		. 	DE	DESIGN	\ Z	o	T H	SHEET						US BE TEGER ALSO	US BEPARTUENT OF TRANSPORTATION FEDERAL, HISHWAY ADPRINTANTION? REGION TEK VANCOVIER, WASHINGTON
13)/07/	= Y		. .		5.3		1111	. 11ma C P4 11	1. 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T' KIKIFUM			.			1414 1414
USSS Ovad - "ETK MT.	nobalo	14	4		8	46£		Месния		}	:	1		-			
Browning events or 25 cfs		7 2			11/8/88	8			1 1	9,cc 3775,4	4.2	1 1	00	644-54- 0.0255'/, to 66.6	\ \ \(\frac{1}{2}\)		17.3773.7
9.14 116 cfs		TW'E			2.7				<u> </u>								•
CULVERT	DESCRIPTION	! !			13 13	COXTROL		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	HEADWATER 001	=	CONTROL	151	RW H H Po - L So		-		
S S S S S S S S S S S S S S S S S S S	STRUCTURAL MATE MITERED MITERED	S END SECTION	512E	0		¥	2	×	4		* •		. °81	Will W	CONTROLLING	OUTLET VELOCITY	COMMENTS
×			5.4	. 55	.25	1.4	0.7	0.5	1.0	3.2	7	3.2	1.7 2.0	0.4	1 2.0	3.9	Based upon TW
-	<u> </u>		5.4	116	.65	3.5	0.7	0.8	2.2	3.8	2.7	3.8	1.7 2.9	9 0.5	3.5	5 6.1	Based upon TW
				,										i			
														<u> </u>	<u> </u>		
			<u> </u>									-					
												1	<u> </u>	<u> </u>	 		
summary and reconnendations For Q2 = 25 cfs	Vb = 6.5 fps Vb = 11.0 fps	Ş	<u> </u>	-8 -8	0.8 ft. 1.6 ft.	= = = =	024)	for the	e e e	0.024) for the culvert barrel 0.024) for the culvert barrel	mel.						
Note: TW is based upon weir elevation and height of flow above weir less the pipe outlet elevation.	weir elevat	ion a	nd he	ight o	fflowa	bove w	ir le	ss the	pjpe	outlet	eleva	tion.					

E-13

O 155 COULT PROTECT IN 1863 PRES CONT. S PARTIL O PO B 155 CHIEF H

1055 Qual - "Interior Creek 18.8 18.8 19.8		\ \ \ \ \		ן ני		z	Ū	L L							US 007	US OFFAILTER OF TRANSFORTSTON FEDERAL MISSERTION: REBON TEN YANCOVIES, WASHINGTON
Stand - "Hypested, Oregon" Stand - "Hypested, Oregon" Stand - "Hypested, Oregon" Stand - "Hypested, Oregon" Stand - "Hypested, Oregon" Stand - "Hypested, Oregon" Stand - "Hypested, Oregon" Stand - "Hypested, Oregon" Stand - "Hypested, Oregon" Stand - "Hypested, Oregon" Stand - "Hypested, Oregon" Stand - "Hypested, Oregon" Stand - "Hypested, Oregon - "The Stand - "Hypested, Oregn - "The Stand - "Hypested, Oregon - "The Stand - "Hypested, Oregon - "The Stand - "Hypested, Oregon - "The Stand - "Hypested, Oregon - "The Stand - "Hypested, Oregon - "The Stand - "Hypested, Oregon - "The Stand - "Hypested, Oregon - "The Stand - "Hypested, Oregon - "The Stand - "Hypested, Oregon - "The Stand - "Hypes	000	\				<u>7</u> .	5	֡֝֝֝֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֜֝֓֓֓֓֡֜֜֡֓֓֓֡֓֜֝֡֡֓֓֡֡֡֡֡֡֡֡	-						1	
Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan" Stand - "threstead, Overan				9-0												D-8
1 2 2 2 2 2 2 2 2 2	17th 1271044			PARTIE				I ·	£1 Cy 1719				{			1 TATION
Stand - "functional of the control				18.8	- 1		10436 94	-	-	MOMIN						
	Mary many									ļ		<u> </u>			/	
142 cfs 1 1 1 1 1 1 1 1 1	USS Quad - "Homestead, Uregon		}					_							/	
1/2 Cfs 1/2 Cfs 1/2 24 24 24 24 24 24 24	•	33		45	8			_	 - -		1					_
1/2 Cfs 1/2	10(11)04	11(1)	<u>:</u>	114.0	FAIR		NT DIG 7 N	1			1	İ				
142 cfs 1 - 1 - 2 1 - 5								_			_		1 8	18		
142 cfs 1 - 1 - 2 1 - 5				31/8/8	~				_		1			} }		
142 cfs 15 15 15 15 15 15 15 1	SYOMITING COLORES							<u>ئ</u>	88	11	4.5	9	74.7	99.5		3000
### And a continue with the continue with the colorest barrel. ### And a continue with the colorest barrel. ### And a colorest barrel. ### And a colorest barrel. ### And a colorest barrel. ### And a colorest barrel. ### And a colorest barrel. ### And a colorest barrel. ### And a colorest barrel. #### And a colorest barrel. #### And a colorest barrel. ###################################	142 cfs			1.5'				: 		Sm]]	buld	ors. c	bbles.	and c	ravels	within
CONTROLL CONTROLL				18 6				<u>. </u>		1,00	harr	-				
	444 cfs	2		4.4				1	7	12617	3					
### ##################################	CULVERT DESCRIPTION		μ				HE	DWAT	5	COMPL	TAT10	_				
### K, H 4, 4+0 TW 10 TW	BITAL PIPE MEADWALLS				11101					ONTROL	#. #.	1.00-1			ļ	
8.5' Open bottpm arch W3' of exposed footings. 18.0' x 11.5' x 11.5 142 0.25 2.9 0.7 0.25 2.3 6.9 1.5 6.9 1.2 6.0 6.0 6.0 x x 11.5 444 0.50 5.8 0.7 0.75 3.5 7.5 2.4 7.5 1.2 7.1 0.6 7.1 8.2 1.42 cfs Wb = 5.8 fps 0 db = 2.4 ft. (n = 0.045) for the culvert barrel. 1.44 cfs Wb = 8.2 fps 0 db = 4.3 ft. (n = 0.045) for the culvert barrel.	MITERED MITERED STRUCTURA PLATE P	SIZE D			H W	×*	I		2 7 7	≱ •						COMMENTS
19.0' x 11.5' x 11.5 142 '0.25 2.9 0.7 0.25 2.3 6.9 1.5 6.9 1.2 6.0 0.5 6.0 5.8 2.8 2.4 7.5 1.2 7.1 2.4 7.5 1.2 7.1 2.5 2.4 7.1 2.5 2.4 7.1 2.5 2.4 7.1 2.5 2.4 7.1 2.5 2.4 7.1 2.5 2.4 7.1	Open bottom anch w/3		i .—							-						
X 11.5 142 '0.25 2.9 0.7 0.25 2.3 6.9 1.5 6.9 1.2 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 0.5 6.0 5.8 1.5 6.0 0.5 6.0 0.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 6.0 0.5 1.5 6.0 0.5 1.5 6.0 0.5 1.5 6.0 0.5 1.5 6.0 0.5 1.5 6.0 0.5 1.5 6.0 0.5 1.5 6.0 0.	.0. 13															
X X 11.5 444 0.50 5.8 0.7 0.75 3.5 7.5 2.4 7.5 1.2 7.1 0.6 7.1 8.2 WENDATIONS WE S.2 fps 0 db = 2.4 ft. (n = 0.045) for the culvert barrel. Wh = 5.8 fps 0 db = 4.3 ft. (n = 0.045) for the culvert barrel. Wh = 8.2 fps 0 db = 4.3 ft. (n = 0.045) for the culvert barrel. Wh = 8.2 fps 0 db = 4.3 ft. (n = 0.045) for the culvert barrel.		11.5 14			6.3	0.7	.25		6.9							Barrel Velocity
wendations Wb = 5.8 fps	×	11.5	i –		8.3	1	.75		7.5	i 	-	} 	 	 	. 	Barrel Velocity
WENDATIONS WD = 5.8 fps						<u> </u>	<u> </u>					1	<u> </u>	<u> </u>		
Wb = 5.8 fps						1	-		 			-	-			
Vb = 5.8 fps	SUMMARY AND RECOMMENDATIONS		-				1	1			1	-		}		
Che Cital Blast old B			b = 2.65 = 4.5	1 ff. (n = 0.0	245) (for the	ਨੂੰ ਨੂੰ	it Egit	بارة بوا.						
Conferin is parette, O be is																
	-		2.5	נומנו נו				٠.								

7111	CU	CULVERT	H. H.	-	DE	DESIGN	Z	၂ တ	日日	SHEET	.				: -	500	US DEFABLIENT OF INASPONIATION PEDENLE, HIGHWAY ACHMINIANION'S ALAKKE WASHINGTON
					15-0												15-0
Elk Creek				·	25.5			10 met 10 mets	· \$	1, KI	2 KINIKUM						BEATION
<u> </u>	"Elk Mtn., Oregon"					78 74 6										/	
	1	33		<u> </u>	ī	45€		. '		— } _							
₩17341		911	1161944	Ţ.	700401	FINE	2	PENHAR	ļ			1			j		
Browning					11/8/88	 &			1					{	}		<u> </u>
	r				1.0				<u></u>	na 2013.2	75.	Creds-50*		7.010	0.010'.L' to 60':		10 607.
וֹ וֹ		 			2.2'				<u> </u>	parrel.	[a]			t and the		מאס וו	
CULVERT	T DESCRIPTION							, E	HEADWATER	ER	COMP	COMPUTATION		.			
11	PIPE PEASOWALES	NO			INLET C	COXTAGE	Ц			틸	COXIXOL	HW+H4%	+ ho - L So	اي			
S S S S S S S S S S S S S S S S S S S	TANGUETURA TANG (DISTING) JADITATY CO CIRSTIN CO	END- \$5071	0 0		,	16.94	ā.	=	¥	440	≱ 6	2 •	. °S1	111111 W HW	בוצה בואס אא אטרבואם	OUTLET VELOCITY	COMMENTS
<u> > ~ </u>	extrasec	footings		-		-										,	
	×		7.1	71	.25	1.8	0.7	.2	1.4	4.3	1.0	4.3 0	0.6 3.9		0.5	3.9 3.9	Barrel Velocity
	×		7.1	333	7	5.0	0.7	1.0	2.8	5.0	2.2	5.0 0.2	0.6 5.4		0.8 5	5.4 6.0	Barrel Velocity
															-	· · ·	
												<u> </u>				•	
														·			
For 02 = 71 cfs Vb = For 050 = 333 cfs Vb =	Vb = 3.9 fps Vb = 6.0 fps		6.6	⊕ ⊕ = 4	1.8 ft. 4.3 ft.	(n = 0. (n = 0.	= 0.045) 1	for th	e culv	for the culvert barrel. for the culvert barrel.	mel.		-	}			
								-	,								-
O 151 (wester purefice sta home forts but and and persons for alter states	-	OTAL IS DUSTE. LINE CITES HELE	1	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 % 6 11 catation										1.		

State Color Colo	/4.00-134 [Ast 4-12]	.												1		12 00.	ATMENT OF TRANSPORTATION	
State Control Contro			日兄	 -	口匠	SIC	Z.	ഗ	Ш Ш	E						1000	CH VANCONER, WASHINGTON	
State Control of the control of					15-€													
Street Control Contr]mg/m_131/6#4								<u> </u>	C. Lvarion	j					Į.	\$TATION.	
Street Control Contr	Chesnimus Creek				25.5	- 1		4 227	ş	<u>∓</u>	KINGK		\			/		
Browning 11/20/20																/		
Broating Broating 11/9/98 Broating 11/9/98 Broating		. 2		•	**	47F				- <u>*</u>		\						
State Stat	P4117781		C1 10 4	-				BY BUILDING	<u> </u>			1						
### 155 157 15	#1#f15114				11,707	1				_	1		, 	}	1		1	
38 cfs 1.5° 1.5° 2.9°					2/1	8	ŀ		- -	- 1	4.		8		49.7			
State Court Cour	91 cfs	1,6,41	١		1.5					C. C.	, obbles	oray	al, and	some	small	boulde	ענני	
		1. ## · I			2.9'				1	with	in the	culve	t barr	[a]		,	•	
	CULVERT DESCRIPTI	OH						7	ADWATE		UNIO	ATION						
5.1. X 10.0 1.	FCTAL.	ľ				OKTROL			•	5	i I	H. H.	ام-ا-م		L			
5.1' X X 6.5 1.1 6.3 0.7 2.7 4.0 4.8 2.9 4.8 0 7.5 1.3 7.5 7.6 Barrel 5.1' X 7 8 1.8 1.1 6.3 0.7 2.7 4.0 4.8 2.9 4.8 0 7.5 1.3 7.5 7.6 Barrel 7.1	CONCRETE PROJECTINE CONCRETE C		312E	o .		¥	×	±			, –	, s	¥.	# HW	CONTROLLING	OUTLET YELOCITY	COUNENTS	
5.1' X X 5.7 381 1.1 6.3 0.7 2.7 4.0 4.8 0 7.5 1.3 7.5 7.6 Barrel NY - AND NECOMMENDATIONS	x 5.71		5.7	16	0.4	2.3	0.7	0.5	 		.5	4	3.9	0.7	3.9	1.8		
NY AND MECONUENDATIONS NY AND MECONUENDATIONS 1 = 91 cfs Vb = 7.6 fps 0 db = 5.7 ft. (n = 0.04) 0 and 1 = 5.7 ft. (n = 0.04) Barrel velocity in this case = arch area = 50 ft. 2 Hitt Hantia M 1 M 1 PM 1 PM 1 PM 1 PM 1 PM 1 PM 1	x 5.7'				1.1	6.3	0.7	2.7		 			7.5	1.3	7.5	7.6		
NY - A KD DECOMMENDATIONS 1 = 91 cfs 1 = 91 cfs 1 = 91 cfs 1 = 91 cfs 1 = 91 cfs 1 = 91 cfs 2 = 5.7 ft. (n = 0.04) 4 0 Barrel velocity in this case = arch area = 50 ft. 2 1111 HABITIA M IMILIARIE CHAINS HABITIA IN THE RESIDENT OF SECTION OF SE				, -														
NY AND MECDIALENDATIONS 1 = 91 cfs 2 = 91 cfs 4 = 5.7 ft. (n = 0.04) 6 = 5.7 ft. (n = 0.04) 9 0 Barrel velocity in this case = arch area = 30 ft.2 THE HABITALM HALL OF STREET IN THE STREET IN THE CHARACTERS OF STREET IN																		
NY AND MECONMENDATIONS = 91 cfs Vb = 1.8 fps 0 db = 5.7 ft. (n = 0.04) 0 = 381 cfs Vb = 7.6 fps 0 db = 5.7 ft. (n = 0.04) Barrel velocity in this case = arch area = 50 ft. 2 HIRTORIGATION INCLUSION OF STREET IN THE STR							•						···-			-		
NY AND MECONMENDATIONS $= 91 \text{ cfs} \qquad \text{Vb} = 1.8 \text{ fps} \qquad 0 \text{ db} = 5.7 \text{ ft. } (n = 0.04)$ $0 = 381 \text{ cfs} \qquad \text{Vb} = 7.6 \text{ fps} \qquad 0 \text{ db} = 5.7 \text{ ft. } (n = 0.04)$ $0 \qquad 0 \qquad 0 \qquad 0$ Barrel velocity in this case = arch area = $50 \text{ ft.} 2$			•					<u> </u>		 	<u> </u>	<u> </u>					,	
this case = arch area = erch a	HENDA	ي ية ية	8 €) ئۇرۇ ئۇرۇپ	0.04	for t	he cu'	vert b	amel.	 	-	_]			
ORAL II K DUNEL O De G			ch arre	ii E	tt 2													
the climation of the teat]					İ			٠.						İ			
				25 25 25											٠			

[4.8-1]4 [4. 1-1]							 										VS OCFAN	US OFFARINGET OF TRANSPORTATION PROCESS. MICHAL MICHAL ADMINISTRATION.
:		O	CULVERT	/E	RT	OE	DESIGN	Z.	ഗ	SHEET	- 						AC 6104 TC	и уансолуев, жазнінетож
						15-F												15-F
Crow Creek	1=Y4 121four					55.8	· •		.	<u> </u>	E, KIN	E' KIRIKUM					١	- ALATION
.	PERCE BANK		=	-			P44(4464 6A	1111						\			/	
· [.`	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	1	155 1		ī	45E			<u></u>	— <u>*</u>		1				/	
*******				1010		. levaine	JHY1	اِ	ed milyan	T			1				_	-
Browning	ning					11/8/88	[.88			1	3,7			(0	}	, 6		<u> </u>
9.9			, p			3.0'				[] 	္ပါ	બ!. `	¥-¥3	200	-	Ŕ]	nr. 264.6
		.	7 1			5.2'				<u> </u>	NC#44KB.							
יחי	ERT DES	DESCRIPTION	HOI		-				HE	HEADWATER		COMPUTATION	ATION					
] - - -	Ç.				IKET	CONTROL	L.		0	=	CONTROL	HW. Ktho	1. S				
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MTD3LORY C. O3R3TIN C. ANUTOURTZ C. STA.M C. STA.M C.	S VERTICAL	MITERED STEED	312	a ,	No.	нж	₹.	π	4	£ +0 1	≥ •	ه م دي.	*	HW.	CONTROLLING HW	VELDCITY	COMMENTS
12.8' x 5.0'	×			5	135	0.5	2.5	0.7	0.5	1.5 3	3.3	3.0 3.	3 0.7	3.1	9.0	3.1	3.9	Based upon TM
12.8' x 5.0'	×			. 2	8	1.65	8.3	0.7	0.9	3.7 4	4.4	5.2 5.2	2 0.7	7 10.5	2.1	10.5	10.2	Full Barrel Flow
	· · · · · ·									! <u>-</u>								•
					<u> </u>						-			 				
										·	-			<u> </u>				
					<u> </u>					-	 							
SUMMARY AND RECOMMENDATIONS FOR Q2 = 135 cfs Vb = For Q50 = 508 cfs Vb =	ENDATIONS Yb = Vb = Vb = Vb = Vb = Vb = Vb = Vb =	5.4	тюн s Vb = 5.4 fps Vb = 10.2 fps	୍ ଚ	+ + + + + + + + + +	2.3 ft. (n = 0.040) for the culvert barrel 5 ft. (n = 0.040) for the culvert barrel.	(n = 0.09)	986 6 (5)	or the	culve	rt ban barrel		-	1				
Assume the 48" relief pipe would carry 95 cfs during	ef pipe	wonjc	d carry	95 cf	's dum'i	ng a (550.		For Q50, $Vb = Q50$ Barrel X	= 050 K fami	Vb = Q50 Barrel X-Sect Area	Area						-	
O 15f Curtiff Ducezer led behad fields bif list bufasiir file leta geteffits	entins .	910 171	orei ir a juuri. Liki capa kar	TO THE	277	111 pt pt 111 16	<u>_</u>											
			•															

Ph 36-114 (Av. 1-11					,										5	US DEPARTMENT OF TAXASFORTATION
O	CULVERT	EF	7	DE	DESIGN	Z	ഗ	П П	SHEET						MEGIC	IEM VANCOURE, WASHINGTON
				13-A	 											12.A
				W) O M P (V			·	j ·	EL EVITION	Ţ					,	STATION
Meachan Creek - No. 1				16.2	***************************************		State sette	ş		I MIKIKOK						
USSS Quad - "Meacham, Oregon"	"no											\			/	
7	(*)		1	. 2	35		_		<u>*</u> -					•		
B01(12)87		1011310	,	Touchair	1)tre	_	MERIPARA	<u> </u>			1		ļ			
DESCRIPTION OF THE PROPERTY OF				28/8/11	8			1]	j		{	{		1
DITUMUITO				70/1	3			ا <u>ج</u> ا	Arx 3657.7	7	C. 45.7	C. 0. 0.013	13. /	/		۔ ا
o.2 75 cfs	142			1.6				<u> </u>	REWAPKS.	Sna11	blucd	ers. c	ravels	and.	cobble	Small boulders, gravels, and cobbles located
••• 500 cfs	· #			4.5'				- I 	with	within barrel	mel					
CULVERT DESCRIPTION	FION						KE	HEADWATER	ER	COMP	COMPUTATION	_				
מונגור	<u> </u>			ואנצו כ	CONTROL				131	CONTROL	CONTROL HW-HILD	14 ho - LSa	٠	-		
MITERED MITERED MITERED MITERED MITERED MITERED MITERED	MITERED	5 2 Z E	σ.	d MJI	¥	×.*	=	4,	\$	*	د ج	<u> </u>		## #05511HG	131T T1:20.	COMMENTS
- 0.2 0.9 0.7 0.7	1.0								1	•	0	-		-		
14' x 12.8' set approximately 2	2 below the existing	Je exi	sting	stream	æd.					•						
Equivalent 10,8' mise by 12,8'			-	-										<u> </u>		
×		10.8	75	0.2	2.2	0.7	0.5	1.1	6.0	1.6	6.0 11.	6.4.9	9 0.5	4,	9 4.8	Barrel Velocity
		_							丁			i i	1	- 	_	
×		10.8	33	0.5	5.4	0.7	.75	3.2 7	7.0	4.5	7.0 1.	1.6 6.2	0.6	6.2	7.6	Barrel Velocity
					_											
													· .	İ		
SUMMARY AND RECORDENDATIONS										 			$\frac{1}{2}$	-		
For $Q2 = 75$ cfs ib = 4.8 fps For $Q50 = 375$ cfs ib = 7.6 fps	3 fps 5 fps	ବ୍ର	db = 2 db: = 4	2.2 ft. (4.9 ft. ((n = 0.045) for the culvert barrel. $(n = 0.045)$ for the culvert barrel.	245) f 245) f	or the	culve culve	ert bar ert bar	rel.						
Assume the 10'x 8.8' (equiv. 9' $ ot\!\!/ ota$) pipe would car	9' g) pipx	s would	ı carry	ry 125 cfs during 050.	; durin	g (50.										
O 151 teritii mattiti m mai tuti o	OTHER IS BURER.		20	111111111111111111111111111111111111111				·-								
	Of HEAT BOTH	•	- - - -	हिंदी में।												

CUL	CULVERT	T.Y	0 6	DESIGN	NS	Ø	T H	SHEET						75 PC 75 PC 75 PC 75 PC	US PEFACTURED OF TRANSPORTATION FUR EACH TRANSPORTATION RESEARCH TEM YAMCOMER, WASHINGTON
			13-B												13-18
	· -		22.2					1. 10	MOMINIA .2				Ì		. STATION
"noosed "Meacham Orecon"				rite Manage	1 .			<u> </u>						/	
	. Z		≥	 55			<u> </u>	¥			\		•		
-	11031		Ternine.	Spare	7	W 2011 24				1					
			11/9/88	8			1			1		{ }	{		
;			1.6	3			<u> </u>	nr 3640.4) 1 2	- 	्व •	0.013'/'			ne. 3638.5
:			4.1.				<u>-</u> 	within barrel.	Jan T	<u>-</u> -	ers. g	ave Is.	y Dua P	Sel dao	nevans, Small bouiders, gravels, and comples located within barrel.
10179	-														
PC PCAGWALLS			IK(ET (CONTROL		Ĩ	HEADWATER OUT	OUTLET	CONTROL	COMPUTATION	H 16 - LS	٠	\vdash		
CSASTIN C.	0.5 PER 0			нж	3	=	4	440	≥ •	. –	LS ₀ .	HW.	E	OUTLET	COMMENTS
selov the	existing stream bed	stream	ا bed.	-									_		
r S	-						-	-					;		
	13	8	0.2	5.6	0.7	0.2	1.3	7.2	1.6	7.2	1.9 5.5	5 .4	5.5	5.2	Barrel Velocity
	13	625	0.5	6.5	0.7	0.75	3.3	8.2	4.1	8.2	1.9 7.1	9.	7.	8.0	Barnel Velocity
							,								
												· 	<u> </u>		
5.2 fps 8.0 fps	. ବ୍ର	8	2.4 ft. 5.3 ft.	<u>:</u> :	0.045)	for	he cul	the culvert barrel the culvert barrel	arrel.	1		-		<u> </u>	
ry 125	Assume the 10'\$ pipe would carry 125 cfs during a		.050										•		
CINT IF B PERSON.	**************************************	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	וון נג ווו נג	2			•						-		
						,									

E-19

#8 19-134 8		С	Uι	_V	EF	· RT	DE	SIC	ξŅ	s	HE	EET	-						PEDERAL	RIMENT OF TRANSPORTATION HIGHWAY ROMBISTRATION: (EN VANCOUVER, MASHINGTON
	, #AW [<u>.</u>		13-C	4 .			- -	ĘLIVAT	 						-	13-C BTATION
Meacham Creek	W 84WE						22.3			10 MAR 1	m.11	Z'	MINIMUM					1		
USGS Quad - "Mear		Orego	n"				,	•												
	N AP			35	:	_	IN	35E			_	AH)W • _							/	_
LECATION					L FJOH		1000250	AAR	ić	#C#1014#	<u> </u>									
							4411	ı			-	j		Ι.			$\overline{\sim}$			
Browning							11/9	/88			_	are 3733	3.7			0.020	7.0.	135'		
	P4		•	-			1.4'						,						hles	located 3731.0
°°2 — 95 cfs	-		'	<u>. 5</u> -							_	•				<u> </u>	215 ₁ 0	io coi	<i></i>	
9-10 625 cfs		<u>.</u>		*· •• _			3.8'				<u>-L</u>	_with								<u> </u>
CULVE!	PIPE	PICADY		-	İ		141.57	COXTROL	<u> </u>	н	ADW	OUTLET	COMP			-1.5	<u></u>			
TING DE L	JRAL 1	7	ŝ	SECTION	SIZE		IALES	CONTROL				VVILET	CONTRO	L HW	HI I NO	1	#OTIET	₹ .	<u>,</u>	•
SIZE COMONETE STATEMENT OF THE STATEMENT	TRUCTURAL PLATE (virth(s)	VEXTICAL	KITCACO	5 GK3	D	a	₽. H.A.	нw	К.	H	đç	4 <u>+D</u>	τw	h _o	LS ₀ .	-HW	HW.	CDMT MOLLING HW	OUTLET VELOCITY	COMMENTS
Ke Confilement 0.2 0.5 0.1	1 61			0.5	0	,		İ				-				•		COM	31	
	-										_									
_15' X 13.8' set *pp	rxxima	ely	2 <u>'. i</u>	elow.	the c	xistir	g strea	<u>n bed</u>	ļi			<u> </u>					<u> </u> ;			
Equivalent 14' span	x 13'	rise	,																	
X					13	95	0,2	2,6	0.7	0.2	1,3	7.1	1.4	7.1	2.7	4.6	0.4	4.6	6.0	Barrel velocity
X					13	625	0.5	6.5	0.7	0.75	3.9	8.4	3.8	8.4	2.7	6.5	0.5	6.5	. 9,4	Barrel velocity
 																			- -	
					,	'													j	<u> </u>
SUMMARY AND RECOMMEN		0 (-			L -	20.64	t. (n =	U WE		+ 5]									
Q2 = 95 cfs V Q50 = 500 cfs V	b = 6.9 b = 9.4			@ @			c. (n = ft. (n =													
,				•				,												
Assume the 10' Ø pi	pe wou	1d ca	iny	125 c	fs du	ring a	a Q50.			•										·

O BEE CHITERE BILKETER FOR BOWD PARES -

.

timt fattar firte.

O to in tal mente at

En 10-154 (Apr 6-71)					С	ะบ	LV	EF	27	DE	SIC	ЭŅ	5	зН	EET	<u> </u>						FEDERA	ARTHENT OF TRANSPORTATION OF TRANSPORTATION OF TRANSPORTATION OF TRANSPORTER WASHINGT
			जस्त ा					÷		13-D		·	· 	_	Cert							-	13-D STATSOR
Meach	am_C	<u>mek</u>	ti oten	84.06						22.4	11414K 24		14441	PECEL	, t	RIKIRA					`		
USGS						วุก"					<u> </u>			_									
							35			11	35E			_ [4K#+-	 -						`	\
		. Lecate	14				10	E1109		1174147	L	4	BERIOL	•	1		F						
	D.		litata							11/9/				_	<u> </u>					~~	<u>~</u>		\ i*
			(544)	91			·			1.5				-	<u>9.ex 367(</u>	. ,				<u>'/'</u> , .•			nr 3668.
°-2 —	9	5 cfs				۱	** 2 -								SCHYSKE:	Smaj	1 bou	ılders	, gra	vels,	and c	obbles	located
0-1-	_6	25 cf	s		·.	_ ;	W-44 _			4.1'					<u>within</u>	the the	barre	<u>:</u>]					·
		CUL	VERT	DES	CRIP	TION	1	Ţ				r -	Н	EADW		COMP							
	OX.	ש	$\overline{}$	ੜਾ∸	1		SECTION	SIZE		IKLET	COMINGE		Г	1	OUTLET	COXERO	LHW	• H11%	LSo	133101	ž.	<u> </u>	
SIZE INCHES	CCNCR REGOVE PAGJEG	PROJECTIN	MITCAED	STRUCTUR PLATE	VERTICAL	MITCHED	CND. SE	reet	. Q	D HA.	НW	K.	н	4.	4,10	τw	ħ ₀	LS _o .	·HW	HW.	COMTROLLING HW	VELOCITY	COMMENTS
Coefficient -	0.2	0,9	1.0	0.7		0.7	0.5		<u> </u>							<u> </u>	•		<u> </u> .	ļ. <u>. </u>	8_	° ≥	<u>- </u>
20' X 20)' sq	uash	pipe	set	арра	oxir	ately	3' t	p 5' l	elow th	e exist	ng si	ream	ped									
Equivale	nt 2	o' si	an X	16'	ris	•																	
			χ					16	95	0.1	1.6	0.7	0.1	1.6	8.8	1.5	8.8	2.2	6.7	0.4	6.7	5.3	Barrel velocity
			Х					16	625	0.4	6.4	0.7	0.6	3.2	9.1	4.1	9.1	2.2	7.5	0.5	7.5	. 8.7	Barrel velocity
											_												
								-				, -							_				
Q2 = 95 Q50 = 60	cfs		٧b		3 fp	os os	@ @	db = db =	= 2.0 = 5.1	ft. (n = ft. (n =	0.045) 0.045)	culve culve	ert ba	arrel arrel	ł							!	· · · · · ·
										711 (2111/2													·

74 14-114 (Av. 6-11)						:U	LV	EF	· · ·	DE	SIC	-N	S	SH-E	EET	·						FEDERAL	. ARMENT OF TRANSPORTATION A HIGHWAY ARMING THE HIGH THE
			अस			· 				13-E				-	Effati							_	13-E
Shee	p Cre	ek								3.0	iáinage ga		SQUAC	mc11	*****	MIKING	4		$\overline{}$			\	
11900	Ouad			HAMI IADI (hrear	าก"				•						•••		/					
	Quad	'		HAP	<u> </u>	,,,,								— <u>}</u>	AKW•								
ļ.———							35	CTASE		18	35E	11	D14:0:11					/				`	
																	/-	—					
			nair					-		11/0				_	1_		/	 -		~~~	- -		_ \ 'i"—
l ——-		COMIL	no_	BT .						11/9	-			-	<u>are 3519</u>	/ بالم	Cred	-50	0.053	2'/	60		3515.8
9.5	2	cfs c	<u>. </u>			፣	¥*2 '-			0.71					U E M'YEK E F								<u> </u>
Q-14	1.	50 ct	Fs			1	¥***			2.3'													· •
	<u> </u>			DES	CRIP	TION		ī	r				н	EADWA	TER	COMP	UTAT	ION		<u> </u>	···		
		HET	λι –	PIPE	HEAD	WALLS	3	1		INLET	CONTROL	I		CHPHA	OUTLET				-LS _o				
SIZE INCHES	CONCRETE BROOVE-EX PROJECTIM	PROJECTING	WITEAED	PLATE PLATE	VERTICAL	MITERED	END SECTION	SIZE D rtt	Q	<u>нж</u>	нw	Ke	н	ďc	<u>d</u> c+D 2⋅	τw	h _ū	LS _o	-HW	HW.	CONTROLLING HW	OUTLET	COMMENTS
Ke Coefficient -	0.2	0.3	0.7	0.7		1.0	0.5	0	·	<u> </u>				,	<u> </u>	c	0				8	°ÿ	
7'ø			_X_		_			7	20,	0,2	1.4	0,7	0.1	1.0	4.0	0.7	4.0	3.2	0.9	0.1	1.4	9.0	Barrel velocity
7'Ø			χ				<u> </u>	7	150	0.7	.4.9	0.7	0.6	3.2	5.1	2.3	5.1	3.2	2.5	0.4	4.9	16.0	Barrel velocity
			·- 																				
																			· · · ·			,	
															~~~~~					1			
<u> </u>						<u> </u>				<del></del>													
SUMMARY .					<b></b> -		ш	L	L	J		<u> </u>	1		· —	<u> </u>			<u> </u>		L	1	·-···
Q2 = 20 (										ft. (n =													
Q50 = 150	ocfs)		٧b	= 16.	.0 fį	ps	0.	db =	2:2 1	ft. (n =	0.024)	culve	rt bai	rrel									
													-										
																							_
O att telates						<del></del>				186 016153				<u>.</u>	· 								

f m e4 - 614 64e: 8 - 766			<del></del>	. ,	C	ะบ	LV	EF	<del>.</del> ?Т	DE	SIC	3Ņ	S	Н	EET	<b>-</b>	•		<del></del> .	•		PEDEAKL	RTMENT OF TRANSPORTATION HIGHWAY ADWINISTRATION? EN VANCOUVER, WASHINGTI
			iitel		·	•				12-A				-	áreas	F) 0-4							12-A
Canyo	on Cr	ek	<u>BERËAM</u>	84.04						27.8	11)MA44 A4		Lawet	MW C1	2'	MINIMA	ĸ					\	
USGS	Quad				egon	ı"				_	:			ı					<i>.</i>				
					-		2			160	32E			-[	AH)Y • .							/	
		10645	94					E1H4		165	J <u>ZE</u>	14	he nibs &c	-				_					
		· <u></u> 17	175=15							<b>0</b> 4 i			<del></del>				/.			$\overline{\sim}$	— <u>—</u> ~	<del>-</del>	
	Br		ng							11/10	)/88		<u>,                                     </u>	_	<u> 428</u>	 39.5ノ	Seat		0.020'	<u> </u>	557	<del></del>	
0.0		5 cf		<b>\$</b> 7			**2 '-			2.7'					**************************************	210,	<b></b>	- 34					<u>ne. 4288.4</u>
۰۰.5 —				•	-	_ '	• · · ·			4.8'				-	#CHARKE		····						
6-11	6.	75 cf					****	·····		4,8				<u> </u>		·							
		MET	VERT	PIPE	P-EAD	TIOH WALLS	T =	1		LYLET	CONTROL	т	H	EADW	ATER BUILET		TATU		-15.	•		{	
A17.5		17.00	ន្ទ	7 K	=	e K	\$ ECTION	SIZE		- INCEL	CONTROL	1			DOILE	LUMIN	""	11110	1	01111	¥ .		•
SIZE	CCHCAETE 4x00VE-END PROJECTIVE	PROJECTING	MITERED	STRUCTURAL PLATE	VERTICAL	HITERED	ENO. SE	1	a	HW D	нw	K.	н	đ _c	<u>¢c 10</u> 2:	TW	No.	LS _o ʻ	·HW	HW.	CONTROLLING KW	OUTLET VELOCITY	COMMENTS
a Coefficient-		0.9	0.7	0.7	0.5	0.1	0.5	rttr							-		١.			-	CO#17	햙	
					_			1			1	1											
2.6° X	8.1'		X_	<del> </del>			<b> </b> -	8.1	215	0,6	4.9	0.7	0.5	2.5	5.3	2.7	5.3	1.1	4.7	0.6	4.9	11.1	Barrel velocity
2.6' X	8.11		Х					8.1	675	1.2	9.7	0.7	2,0	4.7	6.4	4.8	6.4	1.1	7.3	0.9	9,7	15.6	Barrel velocity
								1	·										İ			-	•
<del></del>			ļ <u>.</u>					. <b> </b>	<u> </u>	ļ	<u> </u>	<u> </u>	:			ļ			ļ	<b> </b>		<u>                                     </u>	·
	[								]		•										•	ļ. <b>ļ</b>	
_					<u> </u>	_	i		ļ			1			1								
			<u> </u>	<u> </u>	<u> </u>	<del> </del>	ļ	ļ.—	<del> </del>	ļ	ļ	<u> </u>			<del> </del> -	-	ļ		[				
SUUMARY					1 <i>E</i> -		a	<u> </u>	2 0 4	· /n =	U U347	~u3	er ban	1	1	1	. <i>,</i>		I	1		·	<del>-</del>
)2 = <b>215</b> )50 = 675	ors Sofs		VD:	- 11. = 15.	гр 6 fn	is IS	0	db≃	3.9 f	t. (n =	0.024)	culve:	rt bar rt bar	rel rel									
,-3 0/0	, .			, 51	- · P	_	- ,			•••	,	_ 5								-			
													•										
	<del>.</del>		•41																		<del> </del>		
111 (5111) 111 (5111)	TERZIOR I Ditali	{4\$ \$1	IIME FI Ca CICO	(111) (111)	€ 1	RITE ON	381 3113 12 35714	II, it	المنابة 10 يان	til glilli	*1												

. .. .----

. -----

24 10 - 124 [her 0 - 12]	<del></del>		-	<u>.</u>	C	ะบ	LV	EF	?T	DE	SIC	ξŅ	S	SI-18	ĒET	Γ		~-				UJ DEP FEDERAL REGION	TRANSPORTATION HIGHWAY TO THE TRANSPORTATION TO THE TRANSPORT OF THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO THE TRANSPORTATION TO T
		) pi	5721	alut		•		<u>.</u>		12-B	EA .			-	<u>ti tva</u>	†+ c+-				•		-	12-B STATION
Midd	<u>le Fo</u>	rk o	f Car	IXOU	Cree	<u>k</u>				11.9	1419446 44		I I MTC	P44.21	12'	MINIMU	4				\		
USGS	Quad	- ";	Senec	a, O	rego	л"					:	<u>.                                     </u>						/					
		•		. F. T.			2			1 16S	32E			_{	 								
	<del>-</del>	LOCATO	04	<del>-</del> -				CTION		. 1014014	4444	c	ME KIMA				/						
		·	11426					_												~~			_/
	В	rown:	ina							11/9	/88			ļ	125		<del>/</del> -	<del></del>					
		Ç#	CCX TO					_		7.41	· · · · · ·			_	<u>n er 435.</u>	<u>3.1.</u> /	Gred	a-\$a•_	J. UZZ	<u>/'</u> , . •	<u>-9</u> (F		nr. 4351.7
<b>.</b> .5 —		10 c	<u>rs</u> _			_ ·	<b>*</b> *2 -			1.4'	<del></del>			—Ì	REMARKIL	Small	boul	ders.	grave	els. ar	nd cob	bles v	vithin
9-++	3	50 ci	fs			፣	¥*H _			2.5'					tbe	barre	ا			······································			
· · · · · · · · · · · · · · · · · · ·			VERT	DE5	CRIP	HOIT	-	]		Τ			Н.	EADWA	TER	COMP	UTAT	ION					······································
	~ S =	HET S	1	PIPE	HEAD	WALLS	ğ	SIZE	·	INLET	COXTROL					CONTRO			-L\$ ₀	,			
SIZE	CONCRETE 6400VE-END PAOJECTING	PROJECTWO	MITERED	STRUCTURAL PLATE	VERTICAL	MITERED	END. SECTION	חנו	a	р НЖ	КW	K.	н	đ _C	<u>dc 1D</u>	1 W	ho	LS _o '	·HW	HW. D	COMTROLLING RW	OUTLET VELOCITY	COMMENTS
Ke Coefficient-	0,2	0,9	0.7	0.7	0.5	1.0	0.5	0		<u> </u>							•			<u> </u> .	8	°>	
<u>13,5' X</u>	0.5	50		المراقعة		, ,	n' ba	] 	10 OV	ictina c	troom be												
13.5 /	0,5	<u> 5e</u>	գր,	OXII	la Ce	y Z.	0 56	I W	ie ex	iscing s	J COSII DE	<u> </u>								<del> </del>		4	<del></del>
<u>Eguivale</u>	<u>nt 6</u>	.5' ı	ise	by 1.	.5'	spar		I															
																					0.5		
		_		X	<u> </u>	_		6.5	110	0,4	2.6	0.7	0.5	1.3	3.9	1.4	3,9	2,0	2.4	0.4	2.6	6.2	Barrel velocity
				Х				6.5	350	0.8	5.2	0.7	2,1	3.2	4.8	2.5	4.8	2.0	4.9	0.7	5.2	-8.6	Barrel velocity
										<u> </u>	ļ					<u> </u>						<u>-</u>	
SUMMARY	AND R	ECOMI	LENDA	TIONS	1	·	L	<u>[</u>		1		L				I				<b></b> _			
Q2 = 110	cfs (			Vb :	= 6.1	2 fps	;	0		1.8 ft.													
Q50 = 35	0 cf	S		VD =	= 8.6	6 fps	<b>i</b>	6	do =	3.3 ft.	(n = 0.	.045)	culve	t bai	rel								
O BSE EVEYETE	P(44(1)	(i (4) ( (i) ) ) (i	lawes fo	7[E -	O TI	KET ESE	15 VEL101 VXI ((11	ı,	<u>dr 1 1</u>	toe arnita An in	II			•									
							-	•	ı														

(4 M -   10					C	U	LV	EF	? ? T	DE	SIC	ЗŅ	S	Н	EET	Γ						FEDERAL	ARTHENT OF TRANSPORTATION HIGHWAY ADMINISTRATION TEN VANCOUVER, WASHING
		346		ilet						12-C			· ·		ECEAT	[+ <del>04</del>						_	12-C
Canyo	on Cr	<u>ek</u>	I I A CAM	1100						11.5	-419464 44	16.7	14MX	ا ا	7	RIXIRO	¥		$\overline{/}$	<u></u>			
USGS	Quad	<u>- "S</u>	enec	a <u>. O</u> r	~egor	)"					`	<u> </u>		]				/		-			
			-				1			16\$	32E		,	_}	A.							\	\
		LOCATH					•	((10)	-	TEVALA	4.	46	RC B)\$(1)	١.			F						
	Rr	rowni	nate na							11/9/				-	1		<u>/-</u> -	<del></del>		~~	~~ ~~		_\
		C In	cres	Ďτ						2.0					ary 440					7'7'•	113°		4400.1
a.5		)5 cf				_ '	* 2 -			3.6'				-	•							grav	el_and
G-10		5 cf	5			_ '	*·* -			3,0				_]	<u>cob</u>	bles y	<u>vithir</u>	<u>the</u>	<u>culve</u>	rt bar	rel		
		CUL	VERT	PIPE			<u> </u>			18151	COXTROL	T	Н	EADW		COM	PUTAT		-LSA	···	Ţ		•
SIZE	CCHCAETE BROOVE-END PROJECTING	PROJECTING	WITERED	STAUCTURAL	VERTICAL	MITERED	CHD. SECTION	S12E D	Q	HW D	нж	K _k	н	4,	4,10	TW	h _a	LS ₀	·HW	HW.	CONTROLLING	OUTLET VELOCITY	COMMENTS
a Coolikiaa	0.2	0,9	0.7	0.7		1.0	0.5	0	<u> </u>		ļ	ļ			ļ	c	0	<u> </u>		ļ	₹	0.5	•
0'Ø set	i appro	xima	tely	) 1՝ է	elo.	the	exis	ting:	tream	bed													
quivalen												,									$\prod$		
quivaici	U J.V	<u>, p</u>	Pripe		╁─			<del> </del> -			<del> </del>	<del> </del>		<u> </u>			-	ļ			<del>                                     </del>		
•				X	<u> </u> _	_		9.5	105	0,3	2.9	0.7	0.2	2.5	6.0	2.0	6.0	2.0	4.2	0.4	4.2	6.5	Barrel velocity
				Х				9,5	345	0.7	6.7	0,7	1.1	4.5	7.0	3.6	7.0	2.0	6.1	0.6	6.7	9.0	Barrel velocity
					Γ															}			
						ļ	<del>                                     </del>	<del>                                     </del>			i —	T			<del> </del> -			<del>                                     </del>					
SURMARY	AND R	FCOR	AE NO A	TIONS	<u> </u>	l	<u> </u>	<u>.l</u>			<u> </u>				L,	l	L	!		<u> </u>	<u></u>	<u> </u>	<u> </u>
Q2 = 105 Q50 = 34	cfs			Vb = Vb =	6.5			@ @		2.7 ft. 4.8 ft.										-			
		_																					
D IST COCKET		141 TI	illed Pi	1111	. 61	#(1°14 (#( (1	35 Tubi	111.	O to to	IJ( \$2{11[1	ΦĮ				<del>'</del> -								

fa weeps [km Telff				·	C	Ü	LV	EF	?T	DE	ESIC	3N	5	ы	EET	<u> </u>		•	• • •			FEDERA	ARTMERT OF TRANSPORTATION : 1. HIGHWAY ADMINISTRATION : TEN VANCOUVER, WASHINGTON
				 Jukat						12-D	ta .				Ertan						•		12-0 . station
Ruby	Cree	<u> </u>		-4=						5.5	##(## <b>#</b> ###############################		140026	PHLE3	~	MINIRA	ď					\	
11252	Orad		-			ı					:			ļ		•			/				
		· <del>··</del>		***	<del>5</del>		6	-		115	34E				) }								
	<del>.</del>	LOCATO	94	<del>, -</del> -				£1104		113	J4C	ιί	PEF1841										
·		. <u>,</u> स	lii i ( i							\$ A T										~~			
		~owni								11/10	0/88				are 3726	£ 1 /	<del></del>	<del></del> -	0.020	(/)	- COL	·	
_		cfs		84						1.0'						٠,						:	nr. 3724.3
a.5	<del></del>	<u>/ C[3</u>	-			— ¹	<b>*</b> *2 -						• • • •	-	¥£ñv¥X1™	Sma	l bou	ılders	, gra	veis.	and c	obbles	within
G-14	1	55 cf	s			_ 1	¥"H _			2.1'					the	uthre	ert. ba	meļ.		-	<u> </u>		•
, <u> </u>	_	CUL	YC.	PIPE	ME AD	TION		-				·	К	EADW	ATER		PUTAT			<u> </u>	1		
	# <b>6</b> #	TMG	ខ	¥ :	7	ê	<b>1</b>	SIZE	,	IRLE!	CONTROL	<del> </del>		ι <del>·</del>	OUTLET	CONTRO	I HW	• H t ho	-LS ₀	ontitt	2	Т.	·
SIZE INCHES	CONCAL NBOYT-E	PROJECTIVE	MITERED	STAUCTURAL FLATE (mredes)	VERTICAL	MITERED	END. SECTION	P CET	٥	ъ нж	н₩	K ₄	Ħ	40	<u>dc+D</u> 2:	TW	N₀	LS _o '	·HW	HW.	CONTROLLING	VELOCITY	COMMENTS
Ke Contikient	0.2	0.9	1.0	1.0	0.5	0.7	0.5		<del> </del>	<del> </del>	<del> </del>	ļ				-	•	<b> </b>	<b> </b>	<del> </del>	8_		•
8' X 4'	<u> </u>			X				4	40	0.4	1.6	0.7	0.5	0.8	2.4	1.0	2,4	1.8	1.1	0.2	1.6	5.9	Barrel velocity
8' X 4'				Х			:	4	165	1.1	4.4	0.7	3.0	2.4	3.2	2.1	3.2	8. 1	4.4	1.1	4.4	8.5	Barrel velocity
	Į			i						ļ													•
<del></del> -				<del>                                     </del>					- <del></del>			<u> </u>			-				<del> </del>	<u> </u>	<u> </u>		
									<u> </u>		 								<u> </u>		[ <u> </u>	·	
						-						-											
	Ĺ.,			<u> </u>																			
SUMMARY .							•				0.043	,		,									
Q2 = 40 Q50 = 16			٧b	= 5.9 = 8.5	fps fps		(d ∂	db =	2.7 (	ft. (n·= ft. (n =	0.04) d	ulver บโงคร	t barı t barı	nel nel									
ψ30 - 10	CI	•	טו	- 0.0	, , h2		G	<b>œ</b> ~	٠., ١	C. (III -	3.07) (	ui vei	, Dail	G I									
O est contin			A							<del> </del>					<u>. ·</u>								

/# 18. (34 (84. 9-71)			<u> </u>	•	C	U	LV	EF	₹T	DE	SIC	ЭŅ	S	SI-1	EET	-						FEDERAL	HISKMAY A	TRANSPORTATION DUMISTRATION UVER, WASHINGTON
		740	net 1	eret.	,		· · · · · · · · · · · · · · · · · · ·			12-E	C4 .		· .	- $ $	ELEVAT	7104		-		_		_	12-	E
Big_C	neck.		Hatta	- 1100				<del></del>	· <del></del> · · · ·	30.7	96394 <b>6</b> € 44	14	15441	<b>₽</b> 1,61		MIKIMU	<b>K</b>							
USGŞ (	Quad										:			_										
			•				21	CTH S	·	9\$	32E				AHY							\		
							16	C1101		. 1074145	#4k	IC	<b>B</b> ( 8   8   4	٠	i		F						7	
	Dv.		ii <del>iii</del>							11/10					1		<u>/-</u> :	<del></del> -		~~ ~~	<u></u>		_ \	j*.—
		ownir								841					ary 326	•				4 ¹ /, 1•				<u>nn 3260.4</u>
ئ.ه	- 23	0 cfs	<u> </u>		<del></del>	_ T	<b>*</b> *2 -			1.8'	<del> </del>			-	-								within_	
Q+++	_72	5 cf:	5		-	<u> </u>	¥*** _			3.4'				<u> </u>	the	culve	rt bar	mel.	Also	some	bedro	ck is	exposed.	
		CUL PE1	ĀL	PIPE	- EAD	WALLS		{		191 FT	CONTROL	1	Н	EADW	ATER OUTLET		PUTAT DL HW		-LSn	<del>_ :</del>	Ι		i	
S(ZE	CCMCRETE BADOVE-END PROJECTIME	PROJECTIVO	WITERED	STRUCTURAL PLATE	VERTICAL	MITERED	END SECTION	SIZE D PLET	Q	HA	нж	Ke	н	40	d _c +0	TW	Г	LS ₀	·HW	HW.	CONTROLLING	OUTLET VELOCITY	COI	KMENTS
Ke Coallkian		0.3	0.7	0.7	0,5	0.7	0.5	0	<u> </u>		<u> </u>				<u> </u>			ļ	ļ	ļ	ğ	05	<u></u>	<del></del> -
12' X 7'				Х			]	7	230	0.6	4.2	0.7	8.0	2,1	4.6	1.8	4.6	2.6	2.8	0.4	4.2	10.8	Barrel	velocity
12' X 7'		-		Х				7	725	1.5	10.5	0.7	6.7	4.9	6.0	3.4	6.0	2.6	10.1	1.4	10.5	14.7	Barrel	velocity
12 A /				1-			<u> </u>	+		11.5	,,,,,,		-		+		_	_	_	-	<b>├</b>		<del>-</del>	<del>.</del> -
							<u> </u>	<u> </u>		ļ	ļ	ļ	· .		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	ļ		<b> </b>		
								Ì																
																							· <b>-</b> "	·
			_					<del>  -</del>		-		<del> </del>		<b></b>	<del> </del> -		-		_			-		
			45115				<u> </u>			<u> </u>	<u> </u>			l					<u></u>	L	<u></u>	L		· · · · · · · · · · · · · · · · · · ·
Q2 = 230 Q50 = 72	cfs		Vb :	= 10.4 = 14.	8 fps	s s	@ @	db =	2.2 f 4.6 f	ft. (n = ft. (n =	0.040) 0.040)	culve culve	rt bar rt bar	rel rel										
					,																			
O est conte	BILTET	(t 141 i	iolai f	u(s	C E	×(1:  1	is sue	F2,		til state	Nf.													
est dist er	#E #5164	16F 73	C# {F(1	(112		(a) (a)	ORI USI	•		au ir											·			

\$4 00-164 (40-4-16)	-	•			0	Ü	LV	EF	?T	DE	ESIC	ЭŅ		эн	EET	- ;	-7	7				PEGEAN	ARTMENT OF TRANSPORTATION ( NIGHWAT ADMINISTRATION) TEN VANCOUVER, WASHINGTON
	- 4:	: :	गरा	klui.	,	<i>.</i>	<del></del>			12-F				-	£r £ ¥4	r1 <b>64</b>							12-F 874110#
India	an Cr	eek_	11464	-						23.5	********		S4MAF	<b></b>		MIXINU	ı.		$\overline{}$				
	Ouad		•	_One							:	<u></u>			·								
. :		:	:	, #10-	<b>J</b>		7	:		98	32E		٠.		ANT .							\	\
		Fèceji	44				. 11	CIME		letales	44.4	ić	he Ribiti	-			L			<del></del> -			\
<del></del>			इस <b>न्द</b>						-	12/2		-	٠.	-	$\perp$		<u> </u>			<u>~~</u>	<u>~</u> :		
<del></del> -	<u> </u>	rown	inq ««•••	91	_					841				-	9 rx 313	<u>32.7</u> /	Crad	ı-Sa•_	0.034	<u>'/',</u>	47'-		3131.1
٠٠٠٠	<u>.,ì</u>	85 c	fs.			፣	*** -			1.6				_	#CHY#KIF	Smal	1 bau	lders	. gra	vels.	and or	obbles	within
9***	5	90 ç	fs		٠	1	W+14 _			2.8'				_	bar	rrel.					· <del>.</del>		·
	ļ	CUL		PIPES			<u> </u>		·	<u> </u>	<del>.</del>		н	EADW			UTAT			· · · ·			
	12.5	<b>0</b> ·				T	\$ CC TION	SIZE		INLET	CONTROL	├	Γ .	·	OUTLES	CONTRO	L HW	• H1 lo	-LSa	lenging.	£ .	Γ.	•
SIZE Inches	CCNCAE BROOKS	PROJECTIV	MITERED	STRUCTURAL PLATE	VEATICAL	MITCACD	EXD. 8 EC	D rect		D HA	нж	Ke	н	قو	4,10	TW	h _o	LS _o -	НW	ENTER HW.	NT ROLLI	OUTLET VELOCITY	COMMENTS
Ke Conflicted -	0.2	0.9	0.7	0.7	0.5	1.0	0.5	0		<u> </u>	<del> </del>	<del> </del>			ļ		0			1			
12' X 7'				Х				7	185	0.5	3.5	0.7	0.5	2.1	4.6	1.6	4.6	1.6	3.5	0.5	3.5	9.6	Barrel velocity
12' X 7'				Х				7	590	1.2	8.4	0.7	4.0	4.2	5.6	2.8	5.6	1.6	8.0	1.1	8.4	13.1	Barrel velocity
									ļ .														
-																					. •		····
		-	<u> </u>			_				· ·												-	
											<del></del> -									-		<u>-</u> -	
SUMMARY .	AND I	ECOM	MEND!	L	L	l <u> </u>	L <u>.</u>	L	L	<u> </u>	<u> </u>		<u> </u>		<u> </u>	لـــا			<u> </u>	!	l	L	<del></del>
Q2 = 185 Q50 = 59	cfs		٧b		6 fp:		@ @ .				= 0.040) = 0.040)						-						%

FM 34-454 EAco 8-848			•		С	ับ	LV	EF	?T	DE	SIC	ΝĒ	S	зН	EET	_	<u> </u>					FEOERAL	ARTMENT OF TRANSPORTATION MICHWAY ABENTATION? TEN VANCOUVER, WASHINGTON
										12-G	(s .											_	12-G
Gran	ite C	<u>reek</u>	STALAN	***						11.4	<del>Likių 1</del> 1		. 11 144 (	mee	freat	MIKIKU:	<b>u</b>		/				
1	Quad									<u> </u>	:	•		_[									
	··	LOCATI					17	C1 100 W		85	31E		in ( Ocht 4)	_{	AHİY -	<u>.</u> _						\	
										441										~~			<u> </u>
<u>-</u>		rown								11/1	0/88		·	_	<u>1</u> n <u>rx 297</u>	1.4 /			0.012	<u>'/</u> '	74°	<u> </u>	
9-9	7			•		_ 1	ι <b>₩</b> ·> '-	_		1.2'						•,						bles	within 2970.5
Q+1+	2	90 ç	fs _			1	-			2.3'				_	bac							·	·
		CUL	VERI	DES PIPC	CRIP	TION		Ţ <u></u>				T	н	EADW			TATU		· · · · · ·	<u>.                                    </u>	· · · · ·		·
SIZE	CONCRETE ## # # # # # # # # # # # # # # # # # #	PROJECTING	TERED	STRUCTURAL PLATE (witches)	TICAL	MITERED	\$ ECT104	SIZE	٥	HW	CONTROL	K _e	н	d _c	4c+0	TW		LSo	- L. S ₀	HW.	). L.L.1340	OUTLET VELOCITY	соммента
INCHES		0.9	0.7	0.7	0.5	,	ġ. 0.5	rttt		D	,	~	"		2.			L-30		D .	2 X	VELO	
12.8' X	1					Х		7	75	0.4	2.8	0.7	0.2	0.7	3.9	1.2	3.9	0.9	3.2		i	l i	Barrel velocity
12.8' X						х		7	290	0.7	4.9	0.7	1.4	2.8	4.9	2.3	4.9	0.9	5.4	0.8	5.4	7.2	Barrel velocity
																							•
																					<u> </u>		
<del></del>																				<u> </u>			
			_		-	-					i								<del></del>			-	
SUMMARY	AND R	ECOM	MENDA	LTIONS	t	L	<u> </u>	.		I	l	<b>.</b>	L		<u> </u>	!	L			<u>.                                    </u>	l	<u> </u>	<del></del>
Q2 = 75 Q50 = 25							() ()	qp =	1.8 t 3.7 t	ft. (n = ft. (n =	0.040) 0.040)	culve culve	rt bai rt bai	rrel rrel									:
													,										
O HI CHITE	C ALLACT		helma P	P(\$ -	- 01	×1:11	B tutt	53	0 lo 1	in Beatt	M.			······································									

est list bixtesier fie bete citettis

effet tother fine 4541 111 ft

....

. .. - - - - - -

A CONTRACTOR OF

FM 40 - 28 4 Cher 0 - 78 5			,		C	Ü	LV	EF	21	DE	SIC	ξŅ	8	Н	EET	<u>Γ</u> .		·				US DEP	ARTMENT OF TRANSPORTATION: L RIGHMAY ADMINISTRATION: TEN YANCOUVER, WASHINGTO
	-					•				12-h			· ·		FLEYA	r		,					12-11 TATION
Gra	nite (	neek	11211	***						11.4	145H46( AR	14	. 14444	<b></b>		RINIRGI ()	¥		$\overline{}$				
USGS	Quac					ı 					:	•							<b>/</b>	•			
			:	***			17	7		<b>8</b> \$	31E		•	.	AH)W =						•	\	\
		LOCATI		•				44113		terring	<b>#</b> 4.54		ME BINA	-	İ		1	<u> </u>					\
			1itata			<del></del>				841				-	<u></u>	<del></del>	<u>/_</u>		_ ^	~~	~		
	B	rown	ing_	<del>(1</del>						11/1	0/88			-	are 2990	<u>0.0,</u> /	j. Grad	-so	0.015	<u> Z'</u>	72'-		nr 2988.9
a•5 —	. 7	5 cf	s			_ ı	' <b>**</b> 2 '-			1.2'				_	#ۖYKK#F	_Smal	1 bou	lders.	_grav	æls. a	and co	Habbles	within
Q-11	2	90 ç	fs			1	[¥***			2,2'				_	the	barre	1,						·
<del></del>			VERT	DES	Č010	TION		1	,				н	EADW			UTAT						·
	1.55	THO	Ê	3	ير ا	8	Į į	SIZE		INLET	CONTROL	-			OUILET	CONTRO I	L KW	• K t ha	-LS _o	111111	\$		
SIZE INCHES	CONCRETE BROOVE-END PROJECTIVE	PROJECTING	MITERED	STRUCTURAL SE	VERTIC.	MITER	END SECTION	D rtts	٩	H.M.	HW	K,	н	ط	<u>d</u> _c +0 2·	TW	ho	L\$ _o *	·KW	<u>н</u> ж	CDMT ROLLING KW	OUTLET VELOCITY	сомиентя
Ke Coolikiool-	0.2	0.9	0.7	0.7	0.5	0.7	0.5	0		<u> </u>	ļ						0			<u> </u> :	8	-	·
13.1')	7.6'					X		7.6	75	0.3	2.3	0.7	0.2	0.9	4.3	1.2	4.3	1.1	3.4	0.4	3.4	4.7	Barrel velocity
13.1' >	7.6					x		7.6'	290	0.6	4.6	0.7	0,8	2.7	5.2	2.2	5.2	1.1	4.9	0.6	4.9	7.1	Barrel velocity
					<del> </del>				-		<u> </u>	1			<u> </u>								
				_				-				<b> </b>		-	<u> </u>	ļ			~	<b> </b>			
					<u> </u>														i 				
							<del>                                     </del>	<del>                                      </del>		<u> </u>	<del></del>	<del></del> -						·	<u>-</u> _				
\$UMWARY			HERU.	TICE		<u> </u>		<u> </u>		l					<u> </u>					<u> </u>			•
Q2 = 75 Q50 = 29	çfs		٧b	= 4.1 = 7.1	7 fp		@ @ .			ft. (n = ft. (n =										,			
O ISI CHILI	T DIIIET	, () (4)	liki i	<b>41</b> -	01	et it	B Witt	11,	O No N	tat writti	<u> </u>			•	•					·			
ist ust i	ixensidî	ler tr	CE COLT	(111	Ť.	(#( 64			fri l	111 16 ····											•		

fm ee - (1 a ma- m -   E				<u>.</u>	C	Ü	LV	EF	?T	DE	SIC	ЭŅ	 S	SHE	EET	Γ .				-		PEDERAL	ARTHENT OF TRANSPORTATION RIGHWAY ADMINISTRATION TEN VANCOUVER, WASHING
Cuan	ito (	· · ·	6.F(21	NA-E	-	,		· ·		12-1 14.5	(a .			-	trava	ties Minimu							12-I 374164
Gran	ive c	, een	1145¢#	LAME O						11.5			. Idwat		+								
	Quac	<u> </u>	uare.	<u>Ore</u>	gon_		3(	<del></del>		 8\$	30E	<del></del>	· ,		AH#*.								
	•	406411	<b>64</b>		<del></del> -			CTHON	<del></del> :	Tiesiae	ALI		MERIMA	<u>-</u> -			1		_				\
		• •	*****				<del></del>			111							<u>/.</u>			~~~	_		
	B	mwn	ing -	<b>B</b> T						PA10				$- \cdot$	<u> 228</u>	1.4.	C-44	-sQ	0221	/¹ , t•.	111		3279
٠٠٠ ٢٠٠	, 9	<u> 5 cf</u>	S			¹	. g**			2.2'				<u> </u>	¥£ÁT¥K#	Smal	1_bou	lders	. grav	æls. a	and co	<u>obbles</u>	within
Q-3+	3	50 c	fs		· ·	¹	T¥*H _		<del></del>	4,2'				_	the	barre	1	· .			·		· ·
	<u> </u>	4/67	1.	PIPC	647.45	च्यार	z			191.53	CONTROL	T	Н	EADWA		COMP	TATU		•1 S -				
SIZE INCHES	CONCALTE ENDOVE-EXD PROJECTING	PROJECTIVE		STRUCTURAL PLATE	VERTICAL	MITERED	END SECTION	SIZE D rccr	a	KW D	HW	K.	н	d _e		TW				HW.	CONTROLLING NW	OUTLET VELOCITY	COMMENTS
Corlliciant	0.2	0.3	0.7	0.1	0:5	0.1	0.5	0		<u> </u>	<u> </u>				<del>                                     </del>	•							
13.2' X	111'		<u> </u>	<u> </u>	ļ	X	<u> </u>	11	95	0.2	2.2	0.7	0.1	1.0	6.0	2.2	6.0	2.4	3.7	0.3	3.7	6.2	Barrel velocit
13.2' X	11'			_	_	X		11	350	0.5	5.5	0.7	0.6	4.0	7.5	4.2	7.5	2.4	5.7	0.5	5.7	9,0	Barrel velocit
					_					<u> </u>													
																					-		
																		-					
<del>имилят</del> Q2 = 95 Q5O = 3	cfs		٧b	<b>=</b> 6.	2 fp	S S	@	db = db =	2.4 4.6	ft. (n = ft. (n =	0.045) 0.045)	culve culve	ert ba ert ba	rrel rrel	<u> </u>			l J			L <u>. —</u>	1 <u></u> I	
est twister					01	KIT IT	13 1 to 11 (1)	11,	O ho is i	lat datratta	tí										<del></del>	<del>.</del>	<del></del>

fn 36 - 114 (Ato 8 - 114					0	UI	LV	EF	₹ <b>Т</b>	DE	SIC	ЭŅ	S	H	EET							FEDERAL	RIVERT OF TRANSPORTATION NIGHWAY ADMINISTRATION: TEN YANCOUVER, WASHINGTO
			ilici s	1.1				<u>.                                    </u>		12-J			-	<u>.</u>								_	12-1
Sunf]	lower.									22,6		<del></del>	. 54948E I		I.	MINING.	ĸ		_			\	
USGS						on"					:									•			
		LOCATIO	*-				19	(1108			27E		•	_}	AXX						•	\	\
· · · · · ·			risata				**	C) 10 H	•	. 148454#	A44	• • • • • • • • • • • • • • • • • • • •	hi ( hidean				-						<u></u>
			ng							11/10	/88				4.ex 366]	5 /	<del>/</del>	<del></del> -	3 037	/ <u>'</u>	871	<u>.                                    </u>	
۰-2-						τ	₩*o '			1.1'				1		٠,							ls. and
9-11_		35 cf				_ · _ •	-			2.1'				_	•								
		CUL	VERT	DES	CRID	TION		Ţ			-		H	EADW.			PUTAT						
	TTE THE	DHALL	<u>د</u> ق	3 2	=	g	£110¥	SIZE		INCET	CONTROL		· · ·		OUTLET	CORTRO	OL HW	- HINO	- <u>L5</u> @	antitt	<u> </u>		•
SIZE INCHES	CCHCRETE BROOVE-END PROJECTING	PROJEC	WITER	STAUCTI PLATE	VERTIC	HITE	END- SECTION	PCET	Q	р НЖ	НW	K.	н	فر	4,10	TW	}	LS _o '	·HW	HW.	CONTROLLING	OUTLET	СОЙМЕНТЯ
Ke Coefficient -	0.2	0.9	1,0	7.0	0.5	0.1	0.5	0	<del> </del>		<u> </u>				<del> </del>	•	-		_	-	8		
<u>17,3' Sr</u>	en X	10'	rise	<u>with</u>	12"	hig	baf	Пе	<b> </b>	<u> </u>	<u> </u>				<u> </u>				<u> </u>	ļ	<del> </del> —		
<u>Equivale</u>	nt 17	.3'	X 9'		<u> </u>			ļ	<u> </u>	ļ		<u> </u>			<u> </u>			ļ		ļ	ļ <del>_</del>		<u> </u>
						χ		9	135	0.3	2.7	0.7	0.2	1.6	5.3	1.1	5.3	3.2	2.3	0.3	2.7	7.0	Barrel velocity
						χ		9	485	0.6	5.4	0.7	1.0	3,2	6.1	2.1	6.1	3.2	3.9.	0.4	5.4	.10,8	Barrel velocity
					T										<del> </del>						<u> </u>		
					-			<del> </del>							<del> </del> -	<del> </del>		<del></del>	<u> </u>	<del> </del> _	<b></b>		
SUMMARY .	AND #	ECOM	LENDA	TIONS	<u> </u>		l	<u> </u>	<u> </u>	<u> </u>		l			1		<u> </u>	<u> </u>			<u> </u>		· · · · · · · · · · · · · · · · · · ·
Q2 = 139 Q50 = 48				_		fps fns	,	@ @	<b>q</b> р = qр =	1.7 ft. 3,4 ft.	(n = 0) $(n = 0)$	.045) .045)	culver culver	t ba t ba	rrel rrel		•						•.
400 T	. UI.	•			, ,,,	. 193		-	_		, -	•											
0 111 (1116	1 PIGE(1	(114	labet fi	rts			B run		Q No fi	fat fateift	ŧí				.•	<del></del>							· · · · · · · · · · · · · · · · · · ·
ist list'i		f44 11	(# <b>C</b> 014)					•	WIT	, 111 11											•		

. . .

f N 14 - 119 (Nys. N - 32)	CULVE	RT	DESIG	ЭŅ	S	1-18	EET	-				•		US DEPARENCE REGION	ARBWENT OF TRANSPORTATION, HIENWAY ADMINISTRATION? YEK VANCOUVER, WASHINGTON
PADILET	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11-A		· ·		ELEVAT						•	_	11-A
Marks Creek			29.1		-	P4. E 1	-,	RIKIMU	•					\	
USGS Quad ~ "Looko	rt Mountain"		;							_/	<b>/</b>				
	17		13S 19E			_[	 							/	\
LOCATION	5127199	, 14	74187 444		#£ #13+14				7	, 					\
- SERVICE	<del></del>		8416		·	-	1_		<u> </u>		_	~~~	_		
Browning Execute	BY	<del></del>	11/10/88				e <u>rv. 379</u>	5.4	r Grade	-5+ • <u>_</u>	0.002	7'ــــر٠	531	<del></del>	
9.2115 cfs	Z.w.f	<u> </u>	1.7'	<del></del>			¥€ñY&X1:-	Grave	els an	d cob	bles	locate	d wit	hin th	e <u>nrv 3796, 3</u>
9*** 600 cfs	TW-se		3.7'			_	culv								· <u> </u>
CULVERT	DESCRIPTION				н	ADW.			UTAT						
	PIPE PEADWALLS	ε -	INTEL CONTROL	<del> </del> -			OUTLET	CONTRO	L RW	Hibo	-LS _e _	1	<b>5</b> .		
SIZE STORY STORY	STAUCTURAL PACTICAL VENTICAL MITERED END. SECTION		нм нм	K ₄	н	4,	dc+D	TW	h _e	LS _o .	∙н₩	HW.	CONTROLLING HW	OUTLET VELOCITY	сомментѕ
Ka Cantilicians 0.2 0.9 0.7	0.7 0.5 0.1 0.5 0						<b> </b>	•	0				8_		<u>:</u>
18' X 8.8'	х 8.8	115 0	.2 1.8	0.7	0.1	0.9	4.9	1.7	4.9	0.1	4.9	0.6	4.9	3.0	Barrel Velocity
18' X 8.8'	x 8.8	600 0	.7 6.2	0.7	1.0	3.5	6.2	3.7	6.2	0.1	7.1	0.8	7.1	4.8	Barrel Velocity
												-			
				_							<del></del>		<u> </u>	<u> </u>	
														·	
		1 1													
		_  -									_	<u> </u>		<del>-</del> -	
SUMMARY AND RECOUNSED	TIONS		<u> </u>									l			<del></del>
For Q2 = 115 Cfs For Q50 = 600 cfs	Vb = 3.0 fps @ Vb = 4.8 fps @		6 ft. (n = 0. 8 ft. (n = 0.												
101 Q30 - 000 C1S	10 - 4.0 ips @	(ii) – 0.	O 16. (II - 0,	J-10)	101 U	e cu	,					•			
<u> </u>				.,											
O BEL CHITCH SHEETER SON BOWN FO BEL LISE SHEETERS SON COLT	MS - DIMEN IN STREET, (1255 LEME COLUMN MAIN	- 111 H	ertrift at												

fn 10-110 (44, 4-14)			0	U	LV	EF	?T	DE	SIC	ξŅ	S	1-18	EET			·				FEDERAL	ATHERT OF TRANSPORTATION HISHWAY ADMINISTRATION (EM VARCOUVER, BASHINGT
Brown's Cree	<del>- raoner -</del> ek			•		<u>·</u>		10-A 24.7			I SWAC I		sream	MINIMU	1					_	10-A STATION
USGS Quad -	11-640	h t wt			29			215	8E	·	<u></u>		AKW			_/					
	CATING BESTERE					CIMA		1044044	RANG		ME BIPLAN	_			F			<del>~~</del>		<del>-</del>	
Brow	wning crecess cfs	H-			Wan '		<del></del>	1.8'	/88	<del></del>		-	a <u>rk 433</u>								ner 4332.3
415	cfs		-	•	**** <u>-</u>	·		3.6'					with	in the	culv	ert b			vei di	ET_E00	
	ULVERT HETAL	PIPE	FEAD	WÁLĽŠ	ž			IKLET	COXTAGE	<u> </u>		EADW.	ATER OUTLET		L HW		-LSo	•			,
	MITERED 40	STRUCTURAL		- KITERED	END. SECTION	SIZE D rttt	٥	HW O	нw	к,	н	€c	dr. +0	TW	h _o	LS _o .	·HW	HW. O	CONTROLLING	OUTLET	COMMENTS
2.6' X 9.4' set					i		strea	bed.													
se equivalent	12.5' X	8.0	<u>.                                    </u>		<u> </u>			J	<u> </u>									<u>                                      </u>	<u> </u>		
				X		8	100	0.3	2.4	.7	0.2	1.6	4.8	1.8	4.8	0.4	4.6	0.6	4.6	4.2	Barrel Velocity
	_			X		8	415	8.0	6.4	.7	1.4	3,5	5.7	3.6	5.7	0.4	6.7	8.0	6.7	6.1	Barrel Velocity
																			-		<u> </u>
summary and Record Q2 = 100 cfs or Q50 = 415 cf	S fs	Vb =	4.2 6.1	fps fps		@ @	db = 2 db = 6	2.4 ft. 5.4 ft.	(n = 0. (n = 0.	035) 035)	for th	e cui	vert ba	irrel.		<u> </u>	<u> </u>		<b>4</b>		
·																					
O ste teletet ejuertice est bisk biskasibs fo	Jet tober F 2 Atta Cete	V(1)			g runt Iti ku	",	o ho m i	14 (2411)	61			•		· · · · · · · · · · · · · · · · · · ·	· · · · · ·						

78 M -   14 (8 - 8 -   15)						C	U	LV	EF	?T	DE	SIC	ξŅ	8	зН	EET	_	••	•				PEDERAL	ARIMENT OF TRANSPORTATION , HIGHWAY ADMINISTRATION: TER VANCOUVER, WASHINGTO
			7.0	मस -	*151				:		2-A				_	<b>61641</b> 7							_	2-A ************************************
Lon	ne Cn	ek			RADE						6.8	11116 14		Idwat		~ —	RINIMA	<b>K</b>					\	
USG	s Qu	ad ·			enbus		ot Sp	rings	, Ore	gon"		;								/				
					**			24			7S [′]	7E			_	AH)# = _		····						
	<u>-</u> -	•	• C 4 1 1 0	4		<del>-</del>		11	(1164		Teasiar -	*4**		11 ( E1)+A	<u>-</u> 1	Ì								
			<u>-</u>	HALL																	~~			
			owni	ng							11/10	2/88			_ [	acv 347	· · · ·	·/	<del></del> -	0.050	١ <u>//'</u> ر	יני <del>ר</del>		
		AAC	cre O cf	C#40	BY						2.6'		_		_		,						•	n. 3476.3
۰۰ ک _{۰۰} ۵	· ·						_ '	. 5							一门	¥£Ř¥¥X¶:™							s are	
Q-++_		116	50 c	fs		•	¹				3.9'				_	<u>loc</u>	ated	throu	<u>qhout</u>	the l	parrel.			
			CUL		DES			1 _	Ţ				· · · · · ·	н	EADW			PUTAT				,		
	12.5	ž	ž į			*		\$ CT 10#	SIZE		_INLET_	CONTROL	<b> </b>		!	OUTLET	CONTR	IL HW	• H 1 1/10	- <u>L5.</u>	entitt	₽.		
SIZE	CONCRE		É	MITERED	STRUCTURAL PLATE	VERTICAL	MITERED	Z8 -QH2	PEET	<b>Q</b>	₽ K₩	нw	к.	н	đ,	4,10	τw	h,	L\$o	·HW	HW.	CONTROLLING	OUTLET VELOCITY	COMMENTS
e Coellkins	<u>(+</u>  0.		8,9	1.0	0.7	0.5	0.7	0.5	0							ļ	۰				ļ	8	,	<u>·</u>
21.5' s	pan >	di	1.74	ris	e arc	h wi	th c	pacre	te fox	tings	(approx	imately	1' 0	f vert	ical	exposur	e).			İ	ļ			
		1		X				-	11.7	,	0.4	4.7	0,7			7.0		7.0	3.6	3.6	0.3	4.7	10.5	Barrel Velocity
				X					11.7	1160	0.7	8.2	0.7	0.8	4.7	8.2	3.9	8.2	3.6	5.4	0.5	8.2	14.7	Barrel Velocity
																			•					
				_																				,
or 02	Y AND	RC	COMM	ENDA	TIONS Yb =	- 10	5 fo		<u> </u>	db = '	2 1 ft	(n = 0.0)	ME)	for +l		luont ha	l					<b></b>	·	
or 050												(n = 0.0)												
• •							- [-																	
O ESC COLT							,				if dirift													·

. .

#= 10 - 01 q (A). 0 - F2]		-			C	ะบ	LV	EF	· ?T	DE	SIC	ЭŅ	8	Н	EET	_				· ·		FEDERAL	NTHENT OF TRA HIGHWAY ADMO CM VANCOUVER	CHOITARTEIN
Poop USGS			neite	1401	h Ho	it Spi	rings 9	, Oreg	on"	2-B 1.75 7S	es .		. E C MAS	<b>-</b>	ELEVA E'	MIK(MU	<u> </u>		/_			_	2-B . \$1A110#	
a.5 —	10	owni	ng	H		1		CT ye m		11/10 641 0.4'	<b>V8</b> 8		#E BIDGA		•	Log	<u>barri</u>	ers a		let may		uence event	culvert	44.5
SIZE  INCHES  Ke Conflicient	CONCARTE NOOVETINE	PROJECTING	Ti-	STRUCTURALLIS	VENTICAL TO	MYTT2	MOLIZE GKZ 5	SIZE D FEET	a	IKLET D	CONTROL	Ke	н	EADW 4	OUILET	COMIR	Na PUTAT	ніло	·IIW	HW.	CONTROLLING	OUTLET	COMME	ENTS
48" (MP 48" (MP			X					4	10 35	0.4	1.6	0.7	0.1		2.5	0.4	2.5	<del>                                     </del>	0.0	0	<del>                                     </del>	8.0 11.5	Barrel Ve	
SUMMARY For Q2 = For Q50 = The Q2 ar	10 cf : 35 c nd Q50	s fs dis	chan	Vb= Vb= gesa	: 8 f : 11.	.5 fp		6 6 6	qp⊢≖	.65 ft. 1.2 ft.	(n = 0.	024)	for the	ne cu	ivert ba	arrel.								

fn 18 - 18 d (hec. B - 78 )						ะบ	LV	EF	: ?T	DE	SIC	3N	S	SH(	EE7	r <u>-</u>	•					PEDERAL	TRIMENT OF TRANSPORTATION: KIGHWAY ADWINISTRATION: IEN YANCOUVER, WASHINGT
Pine IISSS	Quad	k - "]	erns	ngd,			27	7		3-A 4.0 6S 11/1/1	3E.	•	Equiac	_    	AND TO THE REMARKS	MIXIMU		hSa	0.026	· · · · · · · · · · · · · · · · · · ·	46'		3-A • • • • • • • • • • • • • • • • • • •
9-1+	6	65 c1	s		<u>.</u>					2,8'				_		·							·
<del></del>	<u> </u>			PIPE			,,							EADW/			PUTAT			-			
SIZE INCHES Ka Castikinal-	CONCRETE	. <u>^</u> _	NITERED 0.7	STRUCTURAL PLATE	1	MITERED	C. END. SECTION	SIZE D rttr	o	PLAK PLAK	HW	Ke	н	đς	dc+D	TW		LS ₀		HW. D	CONTROLLING	OUTLET VELOCITY	COMMENTS
7.5'. <b>ø</b>		Х						7.5	250	0.75	5.6	0.9	0.7	3.8	5.6	1.8	5.6	1.2	5.1	0.7	5.6	13.7	Barrel Velocity
7.5' Ø		Х						7.5	665	1.5	11.3	0.9	5.0	6.2	6.8	2.8	6.8	1.2	10.6	1.4	11.3	17.1	Barrel Velocity
**************************************	230 ( : 580 floo	cfs cfs od re	elief	∀b = ∀b = pipx	= 13. = 17. = car	rri <u>e</u> s		oxima	tely 2		nd 85 ct							/.	.,				· · · · · · · · · · · · · · · · · · ·

f m 40 - 534 tus 8 - 561					C	U	LV	ΕF	?T	DE	5810	ξŅ	8	H	ΞΕΊ	-			-			FEDERAL	ARTMENT OF TRANSPORTATI , HISKWAY ADMINISTRATION TEX YANCOWER, WASHING
		raq	JE 61 1		<u>.</u>				· · · · · ·	7-A	Ľ4 .		<i>,</i>										7-A
Haig	nt Cn		15145	- RADE						4.0	#41#10C EN	**	####E	PEC 1	12	MIKIMUI MIKIMUI	¥		$\overline{}$				
USGS	Quad		•			regor	<u>)"</u>				-	- " - <u></u>						_/	<b>/</b> ,	•			
							34			<b>9</b> S	7W		•	.	AHW .							/	\
		1466710	Η.	,			34	Clien		1001(40	84*	14	ME EI MA	-			F	, 		<u> </u>	<u> </u>	_ <u></u>	
	Bı	ากกา การเการ์	na.							11/1	0/88			-[	<u>.</u>		<u>/</u>	<del></del> -		<u>~~</u>	~ <del>~</del>	_	
		CPC	CHED	<del>e</del> T		-				2.1					<u>are 476</u>	7				5 ¹ /			476,4
م-5 —	·	90 cf	-			י —	<b>*</b> 2 -							-	WCÁYWKI"	_Smal	<u>l</u> gra	vel a	<u>nd sar</u>	<u>ndstone</u>	e bed	are lo	xated
Q***	4	10 cf	<u>s</u>		<u> </u>	'	(#·H _			3.1'					withir	the J	barre	1					
		CUL	42	DES	PIEAD	WALLS	7		,	1311 5 T	CONTROL	Υ	Н	EADW	OUTLET		TATU		-215-	•	Τ		
SIZE	CONCAETE BROOVE-END PROJECTINE	PROJECTING	MITERED	STRUCTURAL PLATE (witters)	VERTICAL	KITERED	END. SECTION	SIZE D rect	q	HW	нж	κ _a	н	đς	d _c +0	TW	h _a	LS ₀ .	hw	HILL HW. D	CONTROLLING	OUTLET VELOCITY	COMMENTS
Coofficient —					0.5	0.7	0.5	0	· .		ļ				ļ	•	۰			<u> </u>	8	°,5	
3.2' X 8	.9'			Х			<u> </u>	8.9	190	0.4	4.5	0.7	0.2	1.7	5,3	2.1	5,3	0.1	5.4	0.6	5.4	3.1	Barrel Velocit
3.2' X 8	.9¹			Х				8.9	440	0.6	5.3	0.7	0.5	2.6	5.7	3.1	5.7	0.1	6.1	0.7	6.1	3.7	Barrel Velocit
														•					<b></b>				
1							<u></u>														_		
									ĺ														
												<b> </b>			-								
UHMARY .			EHDA	TIONS	- 2 '	1 <i>6</i> -6	l	l	d	3.8 ft.	/n - 0	L 0251	fon H	70. 611	luort b				! <u></u>	<u> </u>		1	· +
or Q2 = or Q50 =				Vb =	- J.	i fps 7 foe		<u>მ</u>		8.0 ft.													

NOTE: The above does not consider the influence of the Suislaw River located d/s from the culvert outlet. Based upon the field survey the river probably controls the hydraulic characteristics at the culvert site during high flows.

(##:HI					C	υ	LV	EF	27	DE	SIC	зŅ	S	Н	ΞΕΊ	<b>-</b>						FEDERAL	ATMENT OF TRANSPORTATION HISHWAY ACHINISTRATION (
Eam	es Cre	at.	13151	34.04 -	· · ·	•		<del></del>		7-B 5.2			\$qwaf		11. EY-11	NIK (MA)							7-B \$74164
	S Quad		High		t, 0	regor	7	CTM4		198	6W		b££ijki)	_	AP)F# _				<b>/</b> .				\
	E	irown	}+4=(A	PY	<u> </u>					11/10	0/88			-	<u> </u> n.cx 48/	1.2 /	Ç.,		0,00	2'/'	56'		nr. 484.1
0·10		280 c: 340 c:	fs				**2 -			3,3' 5,0'					of sar	<u>rdston</u>	e bed	rock.		n the	culve	rt bärr	rel consists
SIZE	CALTE SYC-END	PROJECT MO	VERT AL 03KJ4IN	STRUCTURAL STA	FICAD	TION	SECTION	SIZE	٥	IKCET	CONTROL			EADW	OUTLET	CONTRO		- H I No		unn		r.E	CONMENTS
PMCHES Ke Confficient	- 0.7	0.9	0.7	0.1	0.5	0.7	9.5 0.5	etti 0		D	HW .	K ₄	H	4ç	d _c †D 2	e_	<b>4</b>	L\$ ₀	HW	HW.	CONTROLLING	VELOCITY	·
13.8' X	1	ri th	appr	X	tely	1.0	of	concr 8	280	oting e	4.0	0.7	0.6	2.4	5.2	3.3	5.2	0.1	5.7	0.7	5.7	4.0	Barrel Velocity
13.8' X	*' -		- 	х				8	640	1.0	8.0	0.7	2.5	4.5	6.2	5.0	6.2	0.1	8.6	1.1	8.6	7.4	Barrel Velocity
	<del>                                     </del>	-																					
For Q50	= 280	cfs		Vb :	= 4.(	0 fps 4 fps		@ @		5.6 ft. 8.0 ft.											<u> </u>	<u> </u>	<u> </u>

D BSC KITCET BIENTSCO FOR BINOP FINES BSC KISC BIECOSION FOR ARCH COLVERTS

fiel other street

# APPENDIX F

STREAM BED MATERIAL GRADATION DATA

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0035

AGENCY: WDFD

DATE SAMPLED: 12-15-87

DATE RECEIVED: 01-04-88

OWNER:

DATE SHIPPED: -

SAMPLE OF:

PROJECT NAME: FISH PASSAGE STUDY ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING

SAMPLED BY: BRYANT/HOWARD

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

SAMPLE NO.: MT. SCOTT CR CULVERT INTENDED USE:

NO. SACKS: DEPTH: SOURCE NO.:

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

COUNTY:

STATE: OR TYPE OF DEPOSIT:

REMARKS:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
5 "	100.0
4 "	94.7
3 "	94.7
2"	90.4
1 1/2"	84.8
1 "	69.0
3/4"	59.1
1/2"	43.8
3/8"	35.4
#4	22.1
#10	12.2
#40	2.5
#100	1.3
#200	1.0

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0035)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0034

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING DATE SAMPLED: 12-15-87 DATE SHIPPED:

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893 DATE RECEIVED: 01-04-88

PHONE: 206-696-7767

SAMPLE OF:

SAMPLED BY: BRYANT/HOWARD SAMPLE NO.: NEWELL CREEK NO. SACKS: DEPTH: INTENDED USE:

SOURCE NO.: QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

OWNER: COUNTY: STATE: OR TYPE OF DEPOSIT:

REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
3"	100.0
2 "	94.8
1 1/2"	94.8
1"	91.2
3/4"	87.8
1/2"	80.0
3/8"	72.3
#4	55.5
#10	41.5
#40	15.2
#100	3.7
#200	1.7

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0034)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0007

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER: SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

DATE SAMPLED: 12-15-87

DATE SHIPPED: - -

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY:

SAMPLE NO.: COOL CREEK CULVERT

INTENDED USE:

NO. SACKS: DEPTH: SOURCE NO.: - -

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

OWNER:

STATE: OR TYPE OF DEPOSIT:

COUNTY: REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
6"	100.0
5 "	89.7
4 "	85.7
3"	64.4
2"	51.5
1 1/2"	47.7
1 "	41.9
3/4"	36.5
1/2"	27.5
3/8"	22.3
#4	11.8
#10	5.4
#40	1.3
#100	0.5
#200	0.3

RAYMOND E. ROSENBAUM

CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0007)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0005

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING DATE SAMPLED: 12-15-87 ADDRESS: 610 E 5TH ST DATE SHIPPED: - -

> DATE RECEIVED: 01-04-88 VANCOUVER WA 98661-3893

PHONE: 206-696-7767 SAMPLE OF:

SAMPLE NO.: LOST CREEK CULVERT SAMPLED BY:

DEPTH: INTENDED USE:
- QUANTITY REPRESENTED: NO. SACKS: INTENDED USE:

SOURCE NO.:

SOURCE NAME:

LOCATION: OWNER:

STATE: OR TYPE OF DEPOSIT: COUNTY: REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
4" 3" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4	100.0 93.6 83.8 76.9 60.6 54.0 46.5 42.9 35.6
#10	27.0
#40	4.8
#100	0.8
#200	0.3

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0005)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0008

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

DATE SAMPLED: 12-15-87

DATE SHIPPED: -

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY: NO. SACKS:

DEPTH:

SAMPLE NO.: POLALLIE CREEK

INTENDED USE:

SOURCE NO.: - -

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

OWNER:

COUNTY:

STATE: OR TYPE OF DEPOSIT:

REMARKS:

* * * * *

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
7 "	100.0
6 "	77.3
4 "	64.1
3 "	54.6
2 "	40.8
1 1/2"	31.0
1"	25.3
3/4"	22.1
1/2"	18.1
3/8"	15.9
#4	12.4
#10	9.3
#40	4.3
#100	1.2
#200	0.4

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0008)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0020

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING DATE SAMPLED: 12-15-87

ADDRESS: 610 E 5TH ST DATE SHIPPED: - -DATE RECEIVED: 01-04-88 VANCOUVER WA 98661-3893

SAMPLE OF:

PHONE: 206-696-7767 SAMPLE NO.: MOFFET CREEK SAMPLED BY:

DEPTH: INTENDED USE:
- QUANTITY REPRESENTED: NO. SACKS:

SOURCE NO.: - -

SOURCE NAME:

LOCATION: OWNER: STATE: OR TYPE OF DEPOSIT: COUNTY:

REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
5 "	100.0
4 "	90.6
3 "	79.0
2 "	51.5
1 1/2"	39.9
1"	27.5
3/4"	22.7
1/2"	17.1
3/8"	14.5
#4	9.4
#10	5.4
#40	1.7
#100	0.9
#200	0.6

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0020)

REPORT OF TESTING
Aug 21, 1990
LABORATORY CONTROL NUMBER
AG88-01-0019

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING DATE SAMPLED: 12-15-87
ADDRESS: 610 E 5TH ST DATE SHIPPED: - -

VANCOUVER WA 98661-3893 DATE RECEIVED: 01-04-88

PHONE: 206-696-7767 SAMPLE OF:

SAMPLED BY: SAMPLE NO.: LITTLE LOOKINGGLASS

NO. SACKS: DEPTH: INTENDED USE: SOURCE NO.: - QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION: OWNER:

COUNTY: STATE: OR TYPE OF DEPOSIT:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
5" 4" 3" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4 #10	100.0 91.6 80.9 69.4 63.8 49.0 41.0 31.0 26.3 17.2 9.4 1.8
#100	0.9
#200	0.6

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0019)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0033

AGENCY: WDFD PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

DATE SAMPLED: 12-15-87 SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

DATE SHIPPED: DATE RECEIVED: 01-04-88 VANCOUVER WA 98661-3893

PHONE: 206-696-7767 SAMPLE OF:

SAMPLE NO .: TAMARACK GULCH SAMPLED BY: BRYANT/HOWARD

NO. SACKS: DEPTH: INTENDED USE:

SOURCE NAME:

SOURCE NO.: QUANTITY REPRESENTED:

LOCATION: OWNER: COUNTY: STATE: OR TYPE OF DEPOSIT:

REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
4 "	100.0
3 "	93.2
2 "	86.5
1 1/2"	77.6
1"	65.8
3/4"	60.5
1/2"	55.5
3/8"	53.9
#4	50.3
#10	28.8
#40	13.9
#100	9.4
#200	5.0

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0033)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0004

PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

AGENCY: WDFD

PROJECT NUMBER:

DATE SAMPLED: 12-15-87

DATE SHIPPED:

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY: NO. SACKS:

DEPTH:

SAMPLE NO.: S. F. CHESNIMUS CREEK INTENDED USE:

SOURCE NO.: **OUANTITY REPRESENTED:** 

SOURCE NAME:

LOCATION:

OWNER:

STATE: OR TYPE OF DEPOSIT:

COUNTY: REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
5" 4" 3" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4 #10 #40 #100 #200	100.0 86.8 86.8 82.9 74.4 62.9 56.2 45.9 39.7 30.0 18.9 6.3
# 200	1.6

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0002

AGENCY: WDFD PROJECT NAME: FISH PASSAGE STUDY ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

DATE SAMPLED: 12-15-87

DATE SHIPPED:

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY:

SAMPLE NO.: DEVILS RUN CREEK

INTENDED USE:

NO. SACKS: DEPTH: INTENDED USE: SOURCE NO.: - - QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

OWNER:

COUNTY:

STATE: OR TYPE OF DEPOSIT:

REMARKS:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
<b>4</b> "	100.0
3 "	95.6
2 "	72.2
1 1/2"	58.8
1"	44.9
3/4"	37.6
1/2"	29.8
3/8"	25.9
#4	19.3
#10	11.5
#40	1.8
#100	0.8
#200	0.4

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0002)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0012

PROJECT NAME: FISH PASSAGE STUDY ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

AGENCY: WDFD

PROJECT NUMBER:

DATE SAMPLED: 12-15-87

DATE SHIPPED: -

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY: NO. SACKS:

SAMPLE NO.: BILLY CREEK DEPTH:

INTENDED USE:

SOURCE NO.: - -

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

OWNER:

COUNTY:

STATE: OR TYPE OF DEPOSIT:

REMARKS:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
4" 3" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4 #10 #40 #100	100.0 90.4 74.6 66.0 53.8 46.8 37.8 33.3 24.8 15.2 2.5
#200	0.7

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0006

PROJECT NAME: FISH PASSAGE STUDY ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

AGENCY: WDFD PROJECT NUMBER:

DATE SAMPLED: 12-15-87

DATE SHIPPED:

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY:

SAMPLE NO.: CAMP CREEK

NO. SACKS: DEPTH: INTENDED USE: SOURCE NO.: - -QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION: OWNER:

COUNTY: STATE: OR TYPE OF DEPOSIT:

REMARKS:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
5 "	100.0
4"	89.6
3"	83.4
2 "	76.9
1 1/2"	72.1
1 "	60.1
3/4"	51.4
1/2"	40.2
3/8"	34.8
#4	25.8
#10	18.1
#40	1.6
#100	0.1
#200	0.1

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0006)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0017

PROJECT NAME: FISH PASSAGE STUDY ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

AGENCY: WDFD

PROJECT NUMBER:

DATE SAMPLED: 12-15-87

DATE SHIPPED: -

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY:

SAMPLE NO.: DOE CREEK

NO. SACKS: DEPTH:

SOURCE NO.: - -

INTENDED USE:

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

OWNER: STATE: OR TYPE OF DEPOSIT:

COUNTY: REMARKS:

# SIEVE ANALYSIS AS RECEIVED

PERCENT
PASSING
100.0
94.4
83.4
70.5
62.5
47.8
40.7
33.9
31.1
25.6
17.0
2.2
1.0
0.6

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0017)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0014

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD PROJECT NUMBER:

ACCT NO.: 191-17-41-51-0000-002H DATE SAMPLED: 12-15-87

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

SAMPLE NO.: GUMBOOT CREEK

DATE RECEIVED: 01-04-88

DATE SHIPPED:

SAMPLE OF:

SAMPLED BY: NO. SACKS:

INTENDED USE: DEPTH:

SOURCE NO.:

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION: SITE D7

OWNER:

COUNTY: REMARKS:

STATE: OR TYPE OF DEPOSIT:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
6"	100.0
5"	79.1
4 "	72.1
3 "	65.9
2 "	41.5
1 1/2"	34.1
1"	25.5
3/4"	21.6
1/2"	15.6
3/8"	12.9
#4	7.9
#10	3.1
#40	0.3
#100	0.1
#200	0.1

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0014)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0037

PROJECT NAME: FISH PASSAGE STUDY
ACCT NO.: 191-17-41-51-0000-002H
PROJECT NUMBER:
DATE SAMPLED:

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

SAMPLED BY: BRYANT/HOWARD

NO. SACKS: DEPTH:

SAMPLE NO.: ELK CREEK

INTENDED USE:

SOURCE NO.:

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

COUNTY:

OWNER:

AGENCY: WDFD

DATE SAMPLED: 12-15-87

DATE SHIPPED: - -

DATE RECEIVED: 01-04-88

SAMPLE OF:

STATE: OR TYPE OF DEPOSIT:

REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
5 "	100.0
4 "	83.3
3 "	76.0
2 "	48.1
1 1/2"	37.0
1 "	28.9
3/4"	20.7
1/2"	12.4
3/8"	9.3
#4	5.1
#10	2.5
#40	1.0
#100	0.6
#200	0.3

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0037)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0003

PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

AGENCY: WDFD

PROJECT NUMBER:

DATE SAMPLED: 12-15-87

DATE SHIPPED:

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY: NO. SACKS:

DEPTH:

SAMPLE NO.: CHESNIMUS CREEK

INTENDED USE:

SOURCE NO.:

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

OWNER:

STATE: OR TYPE OF DEPOSIT:

COUNTY: REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
4.0	100 0
4 "	100.0
3 "	84.5
2 "	68.8
1 1/2"	57.1
1"	46.2
3/4"	41.3
1/2"	34.2
3/8"	31.0
#4	23.6
#10	11.1
#40	2.6
#100	1.4
#200	0.9

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0003)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0018

PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

SAMPLE NO.: CROW CREEK

SAMPLED BY: NO. SACKS:

DEPTH: INTERCED: INTENDED USE:

SOURCE NO.: SOURCE NAME:

LOCATION: 0+11 11.5RT

COUNTY: REMARKS:

OWNER:

STATE: OR TYPE OF DEPOSIT:

AGENCY: WDFD

DATE SAMPLED: 12-15-87

DATE SHIPPED: - . DATE RECEIVED: 01-04-88

SAMPLE OF:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
5"	100.0
4 "	87.8
3 "	87.8
2 "	75.1
1 1/2"	71.2
1 "	67.7
3/4"	62.4
1/2"	51.9
3/8"	43.5
#4	24.5
#10	11.5
#40	3.1
#100	1.4
#200	0.8

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0018)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0009

PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

AGENCY: WDFD

DATE SAMPLED: 12-15-87

DATE SHIPPED: - -

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY: NO. SACKS:

SAMPLE NO.: MEACHAM CREEK NO. 1

DEPTH: INTENDED USE: - - QUANTITY REPRESENTED: INTENDED USE:

SOURCE NO.: SOURCE NAME:

LOCATION: SITE 1

OWNER:

STATE: OR TYPE OF DEPOSIT: COUNTY:

REMARKS:

SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
4 " 3 "	100.0 97.2
2 "	86.4
1 1/2"	79.8
1"	60.3
3/4"	48.2
1/2"	36.9
3/8"	32.0
#4	23.3
#10	15.0
#40	4.7
#100	2.5
#200	1.4

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0009)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0010

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

DATE SAMPLED: 12-15-87

DATE SHIPPED: -

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY: NO. SACKS:

SAMPLE NO.: MEACHAM CREEK NO. 6

INTENDED USE:

SOURCE NO.:

DEPTH: INTERESENTED:

SOURCE NAME:

LOCATION: SITE 5

OWNER:

STATE: OR TYPE OF DEPOSIT: COUNTY:

REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
4 "	100.0
3 "	95.4
2 "	84.9
1 1/2"	76.4
1 "	54.4
3/4"	46.1
1/2"	35.9
3/8"	31.4
#4	23.9
#10	15.3
#40	3.9
#100	1.6
#200	0.9

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0036

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

SAMPLE NO.: MEACHAM CREEK NO. 7

DATE SHIPPED: -

DATE SAMPLED: 12-15-87

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY: BRYANT/HOWARD NO. SACKS: DEPTH:

INTENDED USE:

SOURCE NO.:

- - QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION: SITE 6

OWNER:

COUNTY: REMARKS:

STATE: OR TYPE OF DEPOSIT:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
5 " 4 "	100.0 92.4
3" 2"	88.7 70.1
1 1/2" 1" 3/4"	53.5 29.2
1/2" 3/8"	15.3 7.2 5.2
#4 #10	3.3
#40 #100	1.2
#200	0.4

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0011

PROJECT NAME: FISH PASSAGE STUDY ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

SAMPLED BY:

SAMPLE NO.: SHEEP CREEK

NO. SACKS:

NO. SACKS: DEPTH: INTENDED USE: SOURCE NO.: - QUANTITY REPRESENTED: INTENDED USE:

SOURCE NAME:

LOCATION: SITE 8

COUNTY:

OWNER:

SAMPLE OF:

AGENCY: WDFD

DATE SAMPLED: 12-15-87 DATE SHIPPED: - -

DATE RECEIVED: 01-04-88

STATE: OR TYPE OF DEPOSIT:

REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
7 "	100.0
6 "	72.5
4 "	72.5
3 "	57.2
2"	33.6
1 1/2"	23.8
1 "	16.9
3/4"	14.6
1/2"	11.2
3/8"	9.8
#4	6.6
#10	3.3
#40	0.9
#100	0.5
#200	0.3

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0011)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0022

PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

AGENCY: WDFD

DATE SAMPLED: 12-15-87

DATE SHIPPED:

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY:

SAMPLE NO .: CANYON CREEK NO.1 INTENDED USE:

NO. SACKS: SOURCE NO.:

DEPTH: INTENDED USE:
- - QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION: WICKIUP CAMPGROUND

OWNER:

COUNTY:

STATE: OR TYPE OF DEPOSIT:

REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
4 "	100.0
3 "	89.7
2"	72.7
1 1/2"	67.9
1 "	56.5
3/4"	49.5
1/2"	40.4
3/8"	36.0
#4	26.2
#10	16.2
#40	3.3
#100	0.9
#200	0.5

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0022)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0024

PROJECT NAME: FISH PASSAGE STUDY AGENCY: ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

DATE RECEIVED: 01-04-88

AGENCY: WDFD

DATE SAMPLED: 12-15-87

SAMPLE OF: SAMPLE NO.: MIDDLE FK. CANYON CR

DATE SHIPPED:

SAMPLED BY: BRYANT/HOWARD SAMPLED BY: BRIANT, ...
NO. SACKS: DEPTH: INTENDED ...
QUANTITY REPRESENTED:

INTENDED USE:

SOURCE NAME:

LOCATION:

COUNTY:

OWNER: STATE: OR TYPE OF DEPOSIT:

REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
514E	PASSING
5 "	100.0
4 "	96.1
3"	96.1
2 "	93.6
1 1/2"	85.8
1"	73.2
3/4"	63.7
1/2"	52.0
3/8"	45.2
#4	31.7
#10	18.6
#40	3.4
#100	1.1
#200	0.6

RAYMOND E. ROSENBAUM

CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0024)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0023

PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

AGENCY: WDFD

PROJECT NUMBER:

DATE SAMPLED: 12-15-87

DATE SHIPPED:

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY:

SAMPLE NO.: CANYON CREEK NO. 3 INTENDED USE:

NO. SACKS: DEPTH: SOURCE NO.: QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION: SITE 3

OWNER:

STATE: OR TYPE OF DEPOSIT:

COUNTY: REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
4" 3" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4 #10	100.0 87.9 68.0 62.3 50.5 44.9 37.4 33.0 23.7 17.1
#100 #200	1.0

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0023)

REPORT OF TESTING
Aug 21, 1990
LABORATORY CONTROL NUMBER
AG88-01-0016

PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

AGENCY: WDFD

PROJECT NUMBER:

DATE SAMPLED: 12-15-87

DATE SHIPPED: -

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY:

SAMPLE NO.: RUBY CREEK

NO. SACKS: DEPTH:

SOURCE NO.: - -

INTENDED USE:

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION: COUNTY:

OWNER: STATE: OR TYPE OF DEPOSIT:

REMARKS:

SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
4 "	100.0
3 "	93.7
2 "	85.8
1 1/2"	78.0
l "	64.7
3/4"	57.4
1/2"	48.2
3/8"	42.5
#4	31.2
#10	20.2
#40	5.0
#100	1.6
#200	0.8

RAYMOND E. ROSENBAUM

CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0016)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0029

AGENCY: WDFD

DATE SAMPLED: 12-15-87

PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

SAMPLED BY: BRYANT/HOWARD

DATE RECEIVED: 01-04-88 SAMPLE OF:

SAMPLE NO.: BIG CREEK

DATE SHIPPED:

PROJECT NUMBER:

NO. SACKS: DEPTH: INTENDED USE:

SOURCE NO.:

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

COUNTY:

OWNER: STATE: OR TYPE OF DEPOSIT:

REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
7" 6" 5" 4" 3" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4 #10 #40 #100 #200	100.0 86.5 86.5 76.4 56.9 48.5 42.5 33.9 28.9 24.0 21.4 15.5 10.9 3.6 0.9
πεσσ	0.4

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0015

PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

AGENCY: WDFD PROJECT NUMBER:

DATE SAMPLED: 12-15-87

DATE SHIPPED: - ·

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY:

SAMPLE NO.: INDIAN CREEK

NO. SACKS:

DEPTH:

INTENDED USE:

SOURCE NO.:

DEPTH: INTENDED USE:
- - QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

OWNER:

COUNTY:

STATE: OR TYPE OF DEPOSIT:

REMARKS:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
4"	100.0
-	
3 "	91.7
2 "	61.0
1 1/2"	44.3
1 "	33.5
3/4"	28.4
1/2"	21.0
3/8"	17.9
#4	11.8
#10	7.4
#40	2.7
#100	1.1
#200	0.6

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

_____

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0015)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0028

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING DATE SAMPLED: 12-15-87 ADDRESS: 610 E 5TH ST DATE SHIPPED: -

DATE RECEIVED: 01-04-88 VANCOUVER WA 98661-3893

SAMPLE OF:

SAMPLE NO .: GRANITE NO. 1

PHONE: 200-055

SAMPLED BY: BRYANT/HOWARD

NO. SACKS: DEPTH: INTENDED USE:
QUANTITY REPRESENTED:

LOCATION: SITE 1

OWNER: STATE: OR TYPE OF DEPOSIT: COUNTY:

REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
7" 6" 5" 4" 3" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4 #10 #40 #100 #200	100.0 89.7 89.7 79.5 65.9 56.0 41.4 35.0 27.0 22.8 15.7 8.5 1.6 0.7 0.4

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0028)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0027

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING DATE SAMPLED: 12-15-87 DATE SHIPPED: - -ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893 DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLE NO.: GRANITE NO. 2

PHONE: 200-050.

SAMPLED BY: BRYANT/HOWARD

NO. SACKS: DEPTH: INTENDED USE:
QUANTITY REPRESENTED:

LOCATION: SITE 2 OWNER:

STATE: OR TYPE OF DEPOSIT: COUNTY:

REMARKS:

# SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
7" 6" 5" 4" 3" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4 #10 #40 #100 #200	100.0 90.5 84.2 60.3 50.2 41.6 34.7 28.5 24.5 20.5 18.0 13.9 9.5 2.5 1.1
	*

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0026

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD

PROJECT NUMBER: ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING DATE SAMPLED: 12-15-87 ADDRESS: 610 E 5TH ST DATE SHIPPED: - -

DATE RECEIVED: 01-04-88 VANCOUVER WA 98661-3893

PHONE: 206-696-7767 SAMPLE OF:

SAMPLE NO.: GRANITE NO. 3 SAMPLED BY: BRYANT/HOWARD

SAMPLED BY: BRITALING NO. SACKS: DEPTH: INTERPED: QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION: SITE 3 OWNER:

STATE: OR TYPE OF DEPOSIT: COUNTY:

REMARKS:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
5 "	100.0
4 "	79.7
3 "	68.1
2 "	54.4
1 1/2"	48.3
1 "	40.6
3/4"	36.2
1/2"	30.5
3/8"	28.2
#4	22.9
#10	15.0
#40	4.0
#100	1.6
#200	0.9

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0026)

REPORT OF TESTING
Aug 21, 1990
LABORATORY CONTROL NUMBER
AG88-01-0021

PROJECT NAME: FISH PASSAGE STUDY AGENCY: WDFD

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING DATE SAMPLED: 12-15-87
ADDRESS: 610 E 5TH ST DATE SHIPPED: - -

VANCOUVER WA 98661-3893 DATE RECEIVED: 01-04-88

PHONE: 206-696-7767 SAMPLE OF:

SAMPLED BY:

SAMPLE NO.: SUNFLOWER CREEK

NO. SACKS: DEPTH: INTENDED USE: SOURCE NO.: - QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION: OWNER:

COUNTY: STATE: OR TYPE OF DEPOSIT:

REMARKS:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
8 " 7 "	100.0 67.9
3 °	58.3
2 "	42.6
1 1/2"	32.5
1"	26.0
3/4"	23.3
1/2"	19.5
3/8"	17.5
#4	13.2
#10	8.6
#40	1.7
#100	0.4
#200	0.2

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0021)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0025

AGENCY: WDFD PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER:

DATE SAMPLED: 12-15-87 SUBMITTED BY: MARK BROWNING DATE SHIPPED: -

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

SAMPLE NO.: MARKS CREEK

SAMPLE OF:

SAMPLED BY: BRYANT/HOWARD SAMPLE NO..

DEDTH: INTENDED USE: QUANTITY REPRESENTED: SOURCE NO.:

SOURCE NAME:

LOCATION:

OWNER:

DATE RECEIVED: 01-04-88

STATE: OR TYPE OF DEPOSIT: COUNTY:

REMARKS:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
6 "	100.0
5 "	93.6
4 "	93.6
3 "	88.3
2 "	82.5
1 1/2"	78.7
1 "	67.3
3/4"	59.4
1/2"	45.2
3/8"	37.5
#4	23.0
#10	13.9
#40	5.0
#100	1.3
#200	0.6

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0025)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0001

PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

AGENCY: WDFD

PROJECT NUMBER:

DATE SAMPLED: 12-15-87

DATE SHIPPED: DATE RECEIVED: 01-04-88

SAMPLE OF: SAMPLE NO.: BROWNS CREEK

SAMPLED BY: NO. SACKS:

DEPTH: INTENDED USE:
- - QUANTITY REPRESENTED:

SOURCE NO.: SOURCE NAME:

OWNER:

LOCATION: COUNTY:

STATE: OR

TYPE OF DEPOSIT:

REMARKS:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
3 "	100.0
2 "	96.1
1 1/2"	92.4
1 "	76.6
3/4"	66.4
1/2"	51.1
3/8"	42.5
#4	24.6
#10	12.7
#40	3.5
#100	0.4
#200	0.2

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0001)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0032

AGENCY: WDFD PROJECT NAME: FISH PASSAGE STUDY PROJECT NUMBER:

ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

SAMPLE OF: SAMPLE NO.: LOWE CREEK

SAMPLED BY: BRYANT/HOWARD NO. SACKS: DEPTH: INTENDED USE:

SOURCE NO.:

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

STATE: OR TYPE OF DEPOSIT:

OWNER:

DATE SAMPLED: 12-15-87

DATE SHIPPED: - -DATE RECEIVED: 01-04-88

COUNTY: REMARKS:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
6 "	100.0
5 "	89.5
4 "	76.3
3 "	74.0
2 "	60.4
1 1/2"	53.0
1 "	37.2
3/4"	29.0
1/2"	20.7
3/8"	17.1
#4	12.1
#10	8.5
#40	2.7
#100	1.1
#200	0.7

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0032)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0030

PROJECT NAME: FISH PASSAGE STUDY

ACCT NO.: 191-17-41-51-0000-002H PROJECT NUMBER: SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

VANCOUVER WA 98661-3893

PHONE: 206-696-7767

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY: BRYANT/HOWARD
NO. SACKS: DEPTH: INTENDED USE:
SOURCE NO.: - QUANTITY REPRESENTED:

SAMPLE NO.: POOP CREEK

SOURCE NAME:

LOCATION:

OWNER: STATE: OR TYPE OF DEPOSIT:

COUNTY:

REMARKS:

AGENCY: WDFD

DATE SAMPLED: 12-15-87

DATE SHIPPED: - -

#### SIEVE ANALYSIS AS RECEIVED

SIEVE SIZE	PERCENT PASSING
8" 6" 3" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4 #10	91.7 82.3 82.3 58.0 45.1 32.5 25.1 17.2 13.1 5.5
#40	0.7
#100	0.3
#200	0.1

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0030)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0031

PROJECT NAME: FISH PASSAGE STUDY ACCT NO.: 191-17-41-51-0000-002H AGENCY: WDFD

PROJECT NUMBER:

SUBMITTED BY: MARK BROWNING DATE SAMPLED: 12-15-87

ADDRESS: 610 E 5TH ST

DATE RECEIVED: 01-04-88 VANCOUVER WA 98661-3893

PHONE: 206-696-7767

SAMPLE NO.: PINE CREEK

SAMPLED BY: BRYANT/HOWARD SAMPLE NO..
INTENDED USE: 

LOCATION: OWNER: STATE: OR TYPE OF DEPOSIT: COUNTY:

REMARKS:

#### SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
7"	100.0
6 "	80.4
_	
4 "	68.9
3 "	62.5
2 "	59.0
1 1/2"	48.8
1 "	33.7
3/4"	26.2
1/2"	18.9
3/8"	16.0
#4	9.7
#10	5.2
#40	1.4
#100	0.6
#200	0.3

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0031)

REPORT OF TESTING Aug 21, 1990 LABORATORY CONTROL NUMBER AG88-01-0038

PROJECT NAME: FISH PASSAGE STUDY ACCT NO.: 191-17-41-51-0000-002H

SUBMITTED BY: MARK BROWNING

ADDRESS: 610 E 5TH ST

PHONE: 206-696-7767

VANCOUVER WA 98661-3893

AGENCY: WDFD

PROJECT NUMBER:

DATE SAMPLED: 12-15-87

DATE SHIPPED:

DATE RECEIVED: 01-04-88

SAMPLE OF:

SAMPLED BY: BRYANT/HOWARD

SAMPLE NO.: HAIGHT CREEK

INTENDED USE:

NO. SACKS: DEPTH: SOURCE NO.:

QUANTITY REPRESENTED:

SOURCE NAME:

LOCATION:

OWNER: STATE: OR TYPE OF DEPOSIT:

COUNTY: REMARKS:

SIEVE ANALYSIS AS RECEIVED

SIEVE	PERCENT
SIZE	PASSING
3"	100.0
2"	94.9
1 1/2"	84.0
1"	66.9
3/4"	58.6
1/2"	47.4
3/8"	41.6
#4	31.5
#10	26.0
#40 #100	9.2
#200	1.6 0.8

RAYMOND E. ROSENBAUM CHIEF MATERIALS LABORATORY

FOR EMORY S. RICHARDSON MATERIALS ENGINEER

PAGE 1 OF 1 PAGES (AG88-01-0038)

# APPENDIX G

OUTLET SCOUR ANALYSES

LIST 0	)F 3	SYMBOLS	CNA	DIMENSIONS
--------	------	---------	-----	------------

Q2	Two year flood, in cubic feet per second (cfs)
Q50	Fifty year flood, in cubic feet per second (cfs)
D50	Particle size from gradation curve such that 50 percent of the mixture is finer by weight, in feet (ft) $\frac{1}{2}$
WT	Culvert tailwater, in feet (ft)
٧0	Culvert outlet velocity, in feet per second (fps)
WO	Width of culvert outlet, in feet (ft)
A	Flow area at the culvert outlet, in square feet ( $\mathrm{ft}^2$ ), or culvert drainage area in square miles
YE	Equivalent depth at the culvert outlet, in feet (ft)
FR	Froude number
HS	Scour depth at culvert outlet, in feet (ft)

FL00D	Q	VO	D50	TW	WO	Α	YE		нs		
							FT	FR	FT	TW/YE	HS/D50
, ALQ			<del></del>						· · · · · · · · · · · · · · · · · · ·		
2	170	11.00	0.06	1.70	10.00	15.45	2.78	1.16	4.29	0.61	71.50
50	260	15,00	0.06	3.00	10.00	17.33	2.94	1.54	8.02	1.02	133.68
2	95	4.00	0.01	1.60	14.00	23.75	3.45	0.38	-3.11	0.46	-474.53
50	275	6.00	0.01	2.80	14.00	45.83	4.79	0.48	-2.78	0.58	-423.10
	145	4.60	0.17	2.50	14.00	31.52	3.97	0.41	-3.25	0.63	-19.12
	365	6.30	0.17	5.60	14.00	57.94	5.38	0.48	-3.20	1.04	-18.82
	255	5.80	0.06	2.50	18.20	43.97	4.69	0.47	-2.88	0.53	-48.05
	650	8.20	0.06	4.70	18.20	79.27	6.30	0.58	-1.83	0.75	-30.45
	265	21.50	0.25	3.30	12.70	12.33	2.48	2.40	13.47	1.33	53.87
	690	29.50	0.25	4.70	12.70	23.39	3.42	2.81	22.90	1.37	91.58
			0.17	3.00	5.67	7.62	1.95	2.07	8.54	1.54	50.23
			0.17	4.90	5.67	18.29	3.02	2.08	13.31	1.62	78.31
			0.08	2.40	17.50	32.50	4.03	0.53	-1.79	0.60	-22.39
			0.08	4.60	17.50	70.00	5.92	0.58	-1.65	0.78	-20.61
				0.80	6.00	2.00	1.00	0.97	0.94	0.80	46.94
			0.02	1.40	6.00	5.73	1.69	1.30	3.34	0.83	167.03
				0.60	6.70	2.88	1.20	1.29	2.32	0.50	37.09
				1.30	6.70	8.56	2.07	1.53	5.58	0.63	89.24
				0.90	10.20	7.57	1.95	0.47	-1.22	0.46	-9.79
					10.20	22,63	3.36	0.55	-1.27	0.56	-10.19
					6.30	10.00	2.24	0.53	-0.97	0.85	-12.10
						17.61	2.97	0.73	0.53	1.01	6.68
					7.50	18.21	3.02	0.85	1.73	0.53	28.82
						44.86	4.74	1.12	6.64	0.70	110.68
							1.79	0.51	-0.87	0.61	-10.85
								0.61	-0.55	0.88	-6.82
	50	2 170 50 260 2 95 50 275 2 145 50 365 2 255 50 650 2 265 50 690 2 125 50 375 2 195 50 560 2 11 50 55 2 23 50 107 2 28 50 129 2 45 50 125 2 153 50 619 2 25	2       170       11.00         50       260       15.00         2       95       4.00         50       275       6.00         2       145       4.60         50       365       6.30         2       255       5.80         50       650       8.20         2       265       21.50         50       690       29.50         2       125       16.40         50       375       20.50         2       195       6.00         50       560       8.00         2       11       5.50         50       55       9.60         2       23       8.00         50       107       12.50         2       28       3.70         50       129       5.70         2       45       4.50         50       125       7.10         2       153       8.40         50       619       13.80         2       25       3.90	2       170       11.00       0.06         50       260       15.00       0.06         2       95       4.00       0.01         50       275       6.00       0.01         2       145       4.60       0.17         50       365       6.30       0.17         2       255       5.80       0.06         50       650       8.20       0.06         2       265       21.50       0.25         50       690       29.50       0.25         2       125       16.40       0.17         50       375       20.50       0.17         2       195       6.00       0.08         50       560       8.00       0.08         50       560       8.00       0.08         2       11       5.50       0.02         2       23       8.00       0.06         2       23       8.00       0.06         2       28       3.70       0.13         50       129       5.70       0.13         2       45       4.50       0.08         50	2       170       11.00       0.06       1.70         50       260       15.00       0.06       3.00         2       95       4.00       0.01       1.60         50       275       6.00       0.01       2.80         2       145       4.60       0.17       2.50         50       365       6.30       0.17       5.60         2       255       5.80       0.06       2.50         50       650       8.20       0.06       4.70         2       265       21.50       0.25       3.30         50       690       29.50       0.25       4.70         2       125       16.40       0.17       3.00         50       375       20.50       0.17       4.90         2       195       6.00       0.08       2.40         50       560       8.00       0.08       4.60         2       11       5.50       0.02       0.80         50       55       9.60       0.02       1.40         2       23       8.00       0.06       1.30         2       28       3.70	2       170       11.00       0.06       1.70       10.00         50       260       15.00       0.06       3.00       10.00         2       95       4.00       0.01       1.60       14.00         50       275       6.00       0.01       2.80       14.00         2       145       4.60       0.17       2.50       14.00         50       365       6.30       0.17       5.60       14.00         2       255       5.80       0.06       2.50       18.20         50       650       8.20       0.06       4.70       18.20         50       650       8.20       0.06       4.70       18.20         2       265       21.50       0.25       3.30       12.70         50       690       29.50       0.25       3.30       12.70         2       125       16.40       0.17       3.00       5.67         50       375       20.50       0.17       4.90       5.67         2       195       6.00       0.08       2.40       17.50         50       560       8.00       0.08       4.60       17.5	2         170         11.00         0.06         1.70         10.00         15.45           50         260         15.00         0.06         3.00         10.00         17.33           2         95         4.00         0.01         1.60         14.00         23.75           50         275         6.00         0.01         2.80         14.00         45.83           2         145         4.60         0.17         2.50         14.00         31.52           50         365         6.30         0.17         5.60         14.00         57.94           2         255         5.80         0.06         2.50         18.20         43.97           50         650         8.20         0.06         4.70         18.20         79.27           2         265         21.50         0.25         3.30         12.70         12.33           50         690         29.50         0.25         4.70         12.70         23.39           2         125         16.40         0.17         3.00         5.67         7.62           50         375         20.50         0.17         4.90         5.67         18.29	2         170         11.00         0.06         1.70         10.00         15.45         2.78           50         260         15.00         0.06         3.00         10.00         17.33         2.94           2         95         4.00         0.01         1.60         14.00         23.75         3.45           50         275         6.00         0.01         2.80         14.00         45.83         4.79           2         145         4.60         0.17         2.50         14.00         31.52         3.97           50         365         6.30         0.17         5.60         14.00         57.94         5.38           2         255         5.80         0.06         2.50         18.20         43.97         4.69           50         650         8.20         0.06         4.70         18.20         79.27         6.30           2         265         21.50         0.25         3.30         12.70         12.33         2.48           50         690         29.50         0.25         4.70         12.70         23.39         3.42           2         125         16.40         0.17	2       170       11.00       0.06       1.70       10.00       15.45       2.78       1.16         50       260       15.00       0.06       3.00       10.00       17.33       2.94       1.54         2       95       4.00       0.01       1.60       14.00       23.75       3.45       0.38         50       275       6.00       0.01       2.80       14.00       45.83       4.79       0.48         2       145       4.60       0.17       2.50       14.00       31.52       3.97       0.41         50       365       6.30       0.17       5.60       14.00       57.94       5.38       0.48         2       255       5.80       0.06       2.50       18.20       43.97       4.69       0.47         50       650       8.20       0.06       4.70       18.20       79.27       6.30       0.58         2       265       21.50       0.25       3.30       12.70       12.33       2.48       2.40         50       690       29.50       0.25       4.70       12.70       23.39       3.42       2.81         2       125       1	2         170         11.00         0.06         1.70         10.00         15.45         2.78         1.16         4.29           50         260         15.00         0.06         3.00         10.00         17.33         2.94         1.54         8.02           2         95         4.00         0.01         1.60         14.00         23.75         3.45         0.38         -3.11           50         275         6.00         0.01         2.80         14.00         45.83         4.79         0.48         -2.78           2         145         4.60         0.17         2.50         14.00         31.52         3.97         0.41         -3.25           50         365         6.30         0.17         5.60         14.00         57.94         5.38         0.48         -3.20           2         255         5.80         0.06         2.50         18.20         43.97         4.69         0.47         -2.88           50         650         8.20         0.06         4.70         18.20         79.27         6.30         0.58         -1.83           2         265         21.50         0.25         3.30         12.70 <td>2         170         11.00         0.06         1.70         10.00         15.45         2.78         1.16         4.29         0.61           50         260         15.00         0.06         3.00         10.00         17.33         2.94         1.54         8.02         1.02           2         95         4.00         0.01         1.60         14.00         23.75         3.45         0.38         -3.11         0.46           50         275         6.00         0.01         2.80         14.00         45.83         4.79         0.48         -2.78         0.58           2         145         4.60         0.17         2.50         14.00         57.94         5.38         0.48         -3.20         0.63           50         365         6.30         0.17         5.60         14.00         57.94         5.38         0.48         -3.20         1.04           2         255         5.80         0.06         2.50         18.20         43.97         4.69         0.47         -2.88         0.53           50         650         8.20         0.06         4.70         18.20         79.27         6.30         0.58         -1.8</td>	2         170         11.00         0.06         1.70         10.00         15.45         2.78         1.16         4.29         0.61           50         260         15.00         0.06         3.00         10.00         17.33         2.94         1.54         8.02         1.02           2         95         4.00         0.01         1.60         14.00         23.75         3.45         0.38         -3.11         0.46           50         275         6.00         0.01         2.80         14.00         45.83         4.79         0.48         -2.78         0.58           2         145         4.60         0.17         2.50         14.00         57.94         5.38         0.48         -3.20         0.63           50         365         6.30         0.17         5.60         14.00         57.94         5.38         0.48         -3.20         1.04           2         255         5.80         0.06         2.50         18.20         43.97         4.69         0.47         -2.88         0.53           50         650         8.20         0.06         4.70         18.20         79.27         6.30         0.58         -1.8

9

### CULVERT OUTLET SCOUR

	FL00D	Q	VO	<b>D</b> 50	TW	MO	A	YE		HS		
LOCATION	FREQ	CFS	FPS	<u>FT</u>	<u>FT</u>	<u>F</u> T	SF	FT	F <u>R</u>	FT	TW/YE	HS/D50
GUMBOOT	2	142	5.80	0.21	1.50	15.00	24.48	3.50	0.55	-1.34	0.43	-6.37
GUMBOOT	50	444	8.20	0.21	2.40	15.00	54.15	5.20	0.63	-0.57	0.46	-2.73
ELK	2	71	3.90	0.17	1.00	13.90	18.21	3.02	0.40	-2.58	0.33	-15.15
ELK	50	333	6.00	0.17	2.20	13.90	55.50	5.27	0.46	-3.43	0.42	-20.15
CHESNIMUS	2	91	1.80	0.12	1.50	5,70	50.56	5,03	0.14	-8.29	0.30	-69.04
CHESNIMUS	50	381	7.60	0.12	2.90	5.70	50.13	5.01	0.60	-1.10	0.58	-9.16
CROW	2	135	3.90	0.04	3.00	12.80	34.62	4.16	0.34	-4.31	0.72	-107.85
CROW	50	508	10.20	0.04	5.20	12.80	49.80	4.99	0.80	2.12	1.04	52.97
MEACHAM T	2	75	4.80	0.06	1,60	12.80	15.63	2.80	0.51	-1.42	0.57	-23.71
MEACHAM 1	50	375 ⁻	7.60	0.06	4.50	12.80	49.34	4.97	0.60	-1.05	0.91	-17.55
MEACHAM 6	2	95	5.20	0.08	1.60	14.40	18.27	3.02	0.53	-1.34	0.53	-16.73
MEACHAM 6	50	500	8.00	0.08	4.10	14.40	62.50	5.59	0.60	-1.27	0.73	-15.84
MEACHAM 7	2	95	6.00	0.13	1.40	14.00	15.83	2.81	0.63	-0.34	0.50	-2.70
MEACHAM 7	50	500	9.40	0.13	3.80	14.00	53.19	5.16	0.73	0.98	0.74	7.82
MEACHAM 9	2	95	5.30	0.13	1.50	20.00	17.92	2.99	0.54	-1.21	0.50	-9.65
MEACHAM 9	50	625	9.70	0.13	4.10	20.00	64,43	5.68	0.72	0.86	0.72	6.91
SHEEP	2	20	9.00	0.25	0.70	7.00	2.22	1.05	1.54	1.38	0.66	5.51
SHEEP	50	150	16.00	0.25	2.30	7.00	9.38	2.17	1.92	8.44	1.06	33.76
CANYON 1	2	215	17.10	0.07	2.70	12.60	19.37	3.11	1.11	4.28	0.87	61.14
CANYON I	50	675	15.60	0.07	4.80	12.60	43.27	4.65	1.27	8.81	1.03	125,81
M CANYON	2	110	6.20	0.05	1.40	13.50	17.74	2.98	0.63	-0.33	0.47	-6.65
M CANYON	50	350	8.60	0.05	2,50	13.50	40.70	4.51	0.71	0.63	0.55	12.62
CANYON 3	2	105	6.50	0.09	2.00	9.50	16.15	2.84	0.68	0.09	0.70	1.05
CANYON 3	50	345	9.00	0.09	3.60	9.50	38.33	4.38	0.76	1.22	0.82	13.56
RUBY CREEK	2	40	5.90	0.05	1.00	8.00	6.78	1.84	0.77	0.56	0.54	11.22
RUBY CREEK	50	165	8.50	0.05	2.10	8.00	19.41	3.12	0.85	1.75	0.67	35.02

ទ

## CULVERT OUTLET SCOUR

	FLOOD	Q	VO	D50	TW	WO	Α	YΣ		HS		
LOCATION	FREQ	CFS	FPS	FT	FT	<u>FT</u>	\$F	FT.	FR	FT	TW/YE	HS/D50
	_							2.00	1.05	2.00	0.55	20 65
BIG CREEK	2	230	10.80	0.19	1.80	12.00	21.30	3.26	1.05	3.92	0.55	20.65
BIG CREEK	50	725	14.70	0.19	3.40	12.00	49.32	4.97	1.16	7.66	0.68	40.32
INDIAN	2	185	9.60	0.15	1.60	12.00	19.27	3.10	0.96	2.83	0.52	18.85
INDIAN	50	590	13.10	0.15	2.80	12.00	45.04	4.75	1.06	5.80	0.59	38.65
GRAN 1	2	75	4.90	0.13	1.20	12.80	15.31	2.77	0.52	-1.29	0.43	-9.95
GRAN I	50	290	7.20	0.13	2.30	12.80	40.28	4,49	0.60	-0.98	0.51	-7.53
GRAN 2	2	75	4.70	0.25	1.20	13.10	15.96	2.82	0.49	-1.55	0.42	-6.21
GRAN 2	50	290	7.10	0.25	2.20	13.10	40.85	4.52	0.59	-1.13	0.49	-4.53
GRAN 3	2	95	6.20	0.17	2.20	13.20	15.32	2.77	0.66	-0.10	0.79	-0.61
GRAN 3	50	350	9.00	0.17	4.20	13.20	38.89	4.41	0.76	1.19	0.95	7.01
SUNFLO	2	135	7.00	0.21	1.10	17.30	19.29	3.11	0.70	0.30	0.35	1.44
SUNFLO	50	485	10.80	0.21	2.10	17.30	44.91	4.74	0.87	3.04	0.44	14.49
MARK'S	2	115	3.00	0.06	1.70	18.00	38.33	4.38	0.25	-5.69	0.39	-94.89
MARK'S	50	600	4.80	0.06	3.70	18.00	125.00	7.91	0.30	-9.09	0.47	-151.51
BROWN'S	2	100	4.20	0.04	1.80	12.60	23.81	3.45	0.40	-2.91	0.52	-69.40
BROWN'S	50	415	6.10	0.04	3.60	12.60	68.03	5.83	0.45	-4.08	0.62	-97.07
LOWE	2	440	10.50	0.13	2.60	20.50	41.90	4.58	0.86	2.80	0.57	21.57
LOWE	50	1160	14.70	0.13	3.90	20.50	78.91	6.28	1.03	7.16	0.62	55.09
POOP	2	10	8.00	0.17	0.40	4.00	1.25	0.79	1.59	1.09	0.51	6.43
POOP	50	35	11.50	0.17	1.40	4.00	3.04	1.23	1.82	4.46	1.13	26.21
PINE	2	230	13.70	0.13	1.70	7.50	16.79	2.90	1.42	6.79	0.59	54.29
PINE	50	580	17.10	0.13	2.80	7.50	33.92	4.12	1.48	10.50	0.68	84.03
HAIGHT	2	190	3.10	0.06	2.10	18.20	61.29	5,54	0.23	-7.55	0.38	-125.88
HAIGHT	50	440	3.70	0.06	3, 10	18.20	118.92	7.71	0.23	-10.46	0.40	-174.30

T